## Figures index

#### From

#### Application of Haar Wavelets and Method of Moments for Computing Performance Characteristics of Electromagnetic Materials

*American Journal of Applied Mathematics and Statistics*.

**2014**, 2(3), 96-105 doi:10.12691/ajams-2-3-3

**Fig****ure****1**. Morlet or Modulated Gaussian wavelet

**Fig****ure****2**. Mexican hat wavelet

**Fig****ure****3**. The Shannon wavelet

**Fig****ure****4**. The Haar wavelet in a finite straight

**Fig****ure****5**. Representation of the Haar function for two-dimensions and one level of resolution

**Fig****ure****6**. Current in the conductor

**Fig****ure****7**. The surface charge (pC/m) on a 1.0m straight wire for 32 subdivisions

**Fig****ure****8**. The surface charge (pC/m) on a 1.0 by 1.0m plate for 16 subdivisions

**Fig****ure****9**. The computing time (s) as a function of the subdivision axe number

**Fig****ure****10**. The Haar matrix

**Fig****ure****11**. Value of the threshold of 0.01% (23528 non-zero elements)

**Fig****ure****12**. Value of a threshold of 0.05% (12232 non-zero elements)

**Fig****ure****13**. Variation of the charge surface density as a function of a selected threshold

**Fig****ure****14**. Matrix configuration after applying the Cholesky decomposition for the threshold equal to 0.01%

**Fig****ure****15**. Electric field simulation

**Fig****ure****16**. Superficial charge distribution

**Fig****ure****17**. Wavelet Coefficients as function of the resolution level

**Fig****ure****18**. Statistical data of the usage of the Haar wavelet with a level 5 resolution

**Fig****ure****19**. Superficial charge distribution with different resolution levels