Short Review on Synthesis of Thiazolidinone and β-Lactam

N.A.A.Elkanzi1,2,*
1Chemistry Department, Aswan-Faculty of Science, Aswan University, Aswan, Egypt
2Chemistry Department, Faculty of Science, Al Jouf University, Al Jouf, Kingdom of Saudi Arabia
*Corresponding author: nadiaelkanzi88@yahoo.com

Received April 26, 2013; Revised August 20, 2013; Accepted September 25, 2013

Abstract The review summarizes literature dealing with the synthesis of thiazolidinone and β-lactam. Various methods for synthesis of thiazolidinone and β-lactam are discussed. Like boiling benzene thioglycolic acid was added to (1)a-d using a water separator to give thiazolidinone derivatives (2)a-d. Also, Reaction of the Schiff bases of 3 and /or 5 with one mole of thioglycolic acid was proceeded smoothly to afford the corresponding thiazolidinone derivatives 6, 7 respectively. The synthesis of a new type of compound, 2-hydrazolyl-5,5-diphenyl-4-thiazolidinone (24), obtained by treatment of thiosemicarbazone with benzyl in basic media. β-lactams were prepared by N-Tosyl-3-halo-3-butenylamines underwent efficient Ullmann-type coupling to afford 2-alkylideneazetidines, which could be readily converted to the corresponding β-lactams by oxidation with O3 to give β-lactams 119. A chiral N-heterocyclic carbene catalyzed the Staudinger reaction of arylalkylketenes with a variety of N-tert-butoxycarbonylarylilmines to give the corresponding cis-β-lactams 124.

Keywords: thiazolidinone, β-lactam, thioglycolic acid, Schiff's bases, synthesis, condensation

1. Introduction

β-Lactams, being a structural unit found in the most widely used antibiotics [1], have occupied a basic position in medicinal chemistry for almost a century now. With the microbes basic position in medicinal chemistry for almost a century now. With the microbes responding to the traditional antibiotics through β-lactamases, the need for novel antibiotics prevails, making synthesis of newer β-lactams ever more important. In addition to their use as antibiotics, β-lactams are increasingly being used as synths for other biologically important molecules [2-11]. β-Lactams have been found to act as cholesterol acyl transferase inhibitors [12], thrombin inhibitors [13], human cytomegalovirus protease inhibitors [14], matrix metalloprotease inhibitors [15], cysteine protease [16], and apoptosis inducers [17]. Moreover, thiazolidin-4-ones and their derivatives are an important class of compounds in organic and medicinal chemistry. The thiazolidin-4-one ring system is a core structure in various synthetic pharmaceutical agents, displaying a broad spectrum of biological activities such as, antitubercular [18], antibacterial [19], anti-HIV [20], anti-inflammatory [21], anti-histaminic [22], antifungal [23], anticancer [24] and analgesic [25].

2. Thiazolidinone

2.1. Synthesis from Cycloaddition Reaction of Thioglycolic Acid to Schiff’s Bases

Cycloaddition reaction of thioglycolic acid to the Schiff’s bases derivatives (1)a-d proceeded successfully. Thus, in boiling benzene thioglycolic acid was added to (1)a-d using a water separator to give thiazolidinone derivatives (2)a-d. Soleiman et al, 2002 [26].

![Figure 1. Synthesis from cycloaddition reaction of thioglycolic acid to Schiff’s bases](image1.png)

Figure 1. Synthesis from cycloaddition reaction of thioglycolic acid to Schiff’s bases

![Figure 2. Reaction of the Schiff’s bases of 3 and /or 5 with one mole of thioglycolic acid](image2.png)

Figure 2. Reaction of the Schiff’s bases of 3 and /or 5 with one mole of thioglycolic acid
Reaction of the Schiff bases of 3 and/or 5 with one mole of thioglycolic acid was proceeded smoothly to afford the corresponding thiazolidinone derivatives 6,7 respectively. Soleiman H.A. et al, 2002 [26].

It is interesting to mention that along with an efficient strategy for synthesis of new heterocyclic by cyclocondensation, reaction of compound (9) with chloroacetyl chloride produced the new compound (10) which is used for the synthesis of thiazolidinone (13). ELKanzi et al., 2007 [27].

Figure 3. Cycloaddition reaction of thioglycolic acid to Schiff’s bases(12) to give thiazolidinone (13)

Cycloaddition reaction of thioglycolic acid to the prepared Schiff’s bases (16)a-c in a mixture of ethanol and DMF in the presence of piperidine as catalyst and afforded thiazolidione derivatives (17)a-c. ELKanzi et al, 2007 [28].

Figure 4. Cycloaddition reaction of thioglycolic acid to the prepared Schiff’s bases (16)a-c afforded thiazolidione derivatives (17)a-c

2.2. Synthesis of Thiazolidinone Derivatives from Aldehydes, Thiosemicarbazides, and Maleic Anhydride

A tandem method for the synthesis of 2-hydrazoyl-4-thiazolidinones (21) from commercially available materials in a 3-component reaction has been developed. The reaction connects aldehydes, thiosemicarbazides, and maleic anhydride, effectively assisted by microwave irradiation. The synthesis of a new type of compound, 2-hydrazoyl-5,5-diphenyl-4-thiazolidinone (24), obtained by treatment of thiosemicarbazone with benzyl in basic media is also reported. HOMO/LUMO energies, orbital coefficients, and charge distribution were used to explain the proposed reaction mechanism.CeciliaSaiz et al, 2008 [29].

2.3. Cyclocondensation of Schiff’s bases with 2-mercapto propionic Acid Afforded 4-Thiazolidinone Derivatives

A series of 4-thiazolidinones and 2-azetidinones have been synthesized by condensation of 4,4’-diaminodiphenylsulphone with various aromatic or heterocyclic aldehydes to yield the Schiff’s bases. Cyclocondensation of Schiff’s bases with 2-mercapto propionic acid afforded 4-thiazolidinone derivatives, and cyclocondensation of Schiff’s bases with chloroacetyl chloride in presence of triethylamine afforded 2-azetidinone derivatives. All these compounds were evaluated for their *in vitro* growth-inhibitory activity against several microbes. Standard ampicillin against Bacillus subtilis.Mehta et al, 2006 [30].

Figure 5. reaction of aldehyde, thiosemicarbazides, and maleic anhydride to give thiazolidinone derivatives (21) and treatment of thiosemicarbazone with benzyl give thiazolidinone derivatives (24)

Figure 6. Cyclocondensation of Schiff’s bases with 2-mercapto propionic acid afforded 4-thiazolidinone derivatives (27)

2.4. Synthesis Via Suzuki Coupling Reaction and Knoevenagel Condensation

Figure 7. Reaction of Aldehyde to the polyethylene glycol (PEG)-and aniline via an imine linkage follow by Knoevenagel condensation afford thiazolidinone derivatives 31

An efficient method for the soluble polymer-supported synthesis of 5-arylidene thiazolidinones and pyrimidinones using aniline as a traceless linker was described. Aldehyde substrates were attached to the polyethylene glycol (PEG)-
bound aniline via an imine linkage, and after the subsequent PEG-promoted Suzuki coupling reaction for the diversification, Knoevenagel condensation was readily employed as the cleavage strategy. Zhang Liu et al, 2008 [31].

2.5. Reaction of Schiff’s bases (35a-i) with Thioglycolic Acid

2-Acetylnaphtho [2,1- b] furan (32), obtained from 2-hydroxy-1-naphthaldehyde was converted into 2-bromoacetylnaphtho[2,1- b]furan (33), which served as an intermediate for the synthesis of title compounds. The compound (33) was treated with thiourea to get 2-(2-aminothiozol-4-yl)naphtho[2,1- b]furan (34), which produced 2-(2-arylideneaminothiozol-4-yl)naphtho[2,1- b]furans (36 a-i) on reacting with various aromatic aldehydes. Schiff bases (35a-i) yielded 2-[2-(2-aryl-4-thiazolidinone)thiazol-4-yl] naphtho [2,1- b]furans (36 a-i) on treating with thioglycolic acid. Compound (33) was reacted with different aromatic amines to obtain 2-(N-aryl-2-amino) acetylnaphtho [2,1- b]furans (37a-k). Similarly reaction with substituted thiourea furnished 2-(2-N-aryliminothiazol-4-yl)naphtho[2,1- b]furans (38a-k).

All the newly synthesized compounds have been characterized by elemental analysis and spectral data, which have been screened for antimicrobial and anthelmintic activities. The selected compounds have been evaluated for antiinflammatory and diuretic activities. Vagdevi et al, 2006 [32].

2.6. Synthesis by Microwave Irradiation of a Mixture of Amine Hydrochloride, Aldehyde and Mercaptoacetic Acid

The preparation of thiazolidin-4-ones by condensation of aromatic aldehydes, amines and mercaptoacetic acid in ethanol. The optimized procedure involved microwave irradiation of a mixture of amine hydrochloride, aldehyde and mercaptoacetic acid (molar ratio 1:2:3) in the presence of 1.25 equivalents of N,N-diisopropylethylamine (DIEA) base in ethanol at 120°C for 30 minutes at atmospheric pressure. Kappe et al, 2004 [33].
2.7. Synthesis from Fluoroussulfonate 42

Synthesis of 2-aryl-substituted 4-thiazolidinone and 4-thiazinanone libraries as drug candidates. Fluoroussulfonate tag 42 was introduced and performed 41 functions during the syntheses: as a phase tag for the purification of intermediates 45, and as an activated leaving group for cross-coupling reactions to form the final products of the library Bin Yan et al, 2008 [34].

2.8. Synthesis from Cyclization of Compound (52a-e) with Thioglycolic Acid Yielded 2-(4-chloro-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) Acetamide (53 a-e)

2-(4-Chloro-3-methylphenoxy)acetohydrazide (51) derived from ethyl 2-(4-chloro-3-methylphenoxy) acetate (50) was reacted with different aromatic aldehydes to yield N-(substituted benzylidene)-2-(4-chloro-3-methylphenoxy)acetamide (52a-e). Cyclization of compound (52a-e) with thioglycolic acid yielded 2-(4-chloro-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) acetamide (53 a-e). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities. Neeraj et al, 2009 [35].

2.9. Synthesis from Nicotinic Acid

Nicotinic acid was refluxed with sulphuric acid and absolute alcohol for 10 h. and the mixture was cooled to...
the room temperature and poured on to the crushed ice. The mixture was then made strongly alkaline by the addition of ammonia solution. The resulting mixture was extracted with ether solvent. The ether was then distilled off and the resultant liquid was recovered. (55) Ethyl nicotinate was condensed with hydrazine hydrate by maintaining the reaction temperature of 0°C. This resulted in solid nicotinic acid hydrazide. The resultant nicotinic acid hydrazide was recrystallised from warm ethanol. (56) Nicotinic acid hydrazide was refluxed with various aromatic / heterocyclic aldehydes in the presence of sulphuric acid for 6 h. The reaction mixture was then poured into the crushed ice. The resultant solid was washed with distilled water, dried in vacuum and recrystallised from warm ethanol. (57a-j) To a mixture of compound 57 in dry dioxane, a solution of 2-mercaptopropionic acid in dry dioxane was added and the reaction mixture was refluxed for 24 h. The reaction mixture was then poured into crushed ice. The separated solid was neutralized by sodium bicarbonate to remove excess of 2-mercaptopropionic acid. Solid compound obtained was crystallized from ethanol to give thiazolidin derivatives (58a-j) Sharma et al, 2009 [36].

Figure 12. Synthesis of thiazolidinone derivatives 58 from nicotinic acid
2.10. Synthesis from Imines 59a-e and Thioglycolic Acid or Thiolactic Acid

3-aryl-2-(2-pyrrolyl)-4-thiazolidinones, 60a-e and 5-methyl-3-aryl-2-(2-pyrrolyl)-4-thiazolidinones, 61a-e were obtained in good yields by refluxing equimolar amounts of the imines 59a-e and thioglycolic or thiolactic acids in dry benzene. FerayAydogan, et al, 2001 [37].

Figure 13. Refluxing equimolar amounts of the imines 59a-e and thioglycolic or thiolactic acids in dry benzene

2.11. Heterocyclisation of Schiff’s Bases with Thioglycolic Acid, Thiomalic Acid or Acetic Anhydride Afforded Novel Heterocyclic Derivatives 4-thiazolidinones (66a-c), 5-carboxymethyl-4-thiazolidinones (67a-c)

4-Methylcoumarinyl-7-oxyacetic acid hydrazide (62) reacted with arylazopropanes or hydrazono-3-oxobutyrate derivatives to form pyrazole (63a-c) and pyrazolone derivatives (65a-c). Heterocyclisation of Schiff’s bases with thioglycolic acid, thiomalic acid or acetic anhydride afforded novel heterocyclic derivatives 4-thiazolidinones (66a-c), 5-carboxymethyl-4-thiazolidinones (67a-c) and oxadiazoles (68a-c), respectively. Some of the compounds showed promising antioxidant activity in vitro and cytotoxic activity against DLA cells and EAC cells. Manojkumar et al, 2009 [38].

Figure 14. Reaction of Schiff’s bases with thioglycolic acid, thiomalic acid or acetic anhydride afforded novel heterocyclic derivatives 4-thiazolidinones (66a-c), 5-carboxymethyl-4-thiazolidinones (67a-c)
2.12. Cyclocondensation of Schiff’s Bases 70a-o with Mercaptoacetic Acid and Mercaptopropionic Acid

Substituted Schiff’s bases 70a-o prepared by the treatment of 2-amino-4-(α-methoxyiminocarbomethoxymethyl)-thiazole 69 with different aromatic aldehydes, on cyclocondensation with mercaptoacetic acid and mercaptopropionic acid in dry benzene furnished desired thiazolidinones of type 71a-o and 72a-j, respectively. The structures of the compounds have been assigned on the basis of elemental analyses and spectral data. The products were evaluated for their in vitro growth inhibiting activity against several microbes. Some of the compounds showed significant antitubercular and antifungal activity Parekh et al.2004 [39].

2.13. Synthesis from 5-Substituted 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine

5-Substituted 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine were synthesized by interaction of 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonylhydrazide with some aldehydes to give the corresponding Schiff’s bases, which after cyclization gave corresponding thiazolidinones. For some of the thiazolidinones, Mannich bases reaction was carried out. Mahmoud et al.2005 [40].
2.14. Synthesis from 2-chloro-7-methoxy-3-formylquinoline24,25, and 3-amino-4-(phenyl diazenyl) Phenol

The starting compounds 2-chloro-7-methoxy-3-formylquinoline24,25, was condensed with 3-amino-4-(phenyl diazenyl) phenol under microwave irradiation in one pot to furnish the compound 3-[(1E)-1-aza-2-(2-chloro-7-methoxy-3-quinolyl-vinyl)-4-(aryl diazenyl) phenol 334 in good yield. Compound, 3-[(1E)-1-aza-2-(2-chloro-7-Methoxy-3-quinolyl-vinyl)-4-(aryl diazenyl) phenol 79 upon cyclization with chloroacetylchloride and 2-mercaptop acetic acid by microwave irradiation technique yields the title compound 80a-s and 81a-s, respectively in good yield Patel et al, 2008 [41].
2.15. Synthesis from Heterocyclization

Reaction of 2-(benzothiazol-2-ylthio)-N'-(benzyldieneacetoxydrazide85a-j with SHCH2COOH

The synthesis of 4-thiazolidinones 86a-j in a good yields from the heterocyclization reaction of 2-(benzothiazol-2-ylthio)-N'-(benzyldieneacetoxydrazide85a-j with SHCH2COOH in DMF in the presence of a catalytic amount of anhydrous ZnCl2 under microwave irradiation is described and compared with conventional synthesis methods. Some of the new compounds were tested against bacteria (Gram ve and Gram+ ve) and fungi. Desai et al. 2006 [42].
2.16. Synthesis from Cyclization of 1-(3-ethyl-4(3H)-quinazolinone-2-ylmercapto-acetyl)-4-alkyl/aryl Thiosemicarbazides (87) with Ethyl 2-bromopropionate

Two regiosomer series, 2-(3-ethyl-4(3H)-quinazolinone-2-ylmercaptoacetylhydrazono)-3-alkyl/3-aryl-5-methyl-4-thiazolidinones (88) and 2-arylimino-3-(3-ethyl-4(3H)-quinazolinone-2-ylmercaptoacetylamino)-5-methyl-4-thiazolidinones (89), were synthesized by the cyclization of 1-(3-ethyl-4(3H)-quinazolinone-2-ylmercapto-acetyl)-4-alkyl/aryl thiosemicarbazides (87) with ethyl 2-bromopropionate in the presence of anhydrous sodium acetate in anhydrous ethanolic medium. Aysel GÜRSOY et al, 2005 [43].

![Diagram](image1.png)

Figure 19. Reaction of 1-(3-ethyl-4(3H)-quinazolinone-2-ylmercapto-acetyl)-4-alkyl/aryl thiosemicarbazides (87) with ethyl 2-bromopropionate to give thiazolidinone 88 and 89.

2.17. Synthesis from 4-Carbethoxymethyl-2-[(4-chloropropionyl-bromobutyryl-chlorophenyl) acetyl] Aminothiazoles (91a-c)

4-Carbethoxymethyl-2-[(4-chloropropionyl-bromobutyryl-chlorophenyl) acetyl] aminothiazoles (91a-c) were synthesized by the reaction of 4-carbethoxymethyl-2-aminothiazole (90) with chloropropionyl chloride, bromobutyryl bromide and chlorophenylacetyl chloride, respectively, which were then refluxed with ammonium thiocyanate to obtain 5-substituted 2-[(4-carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones (92a-c). 92a-c were stirred with formaldehyde and various secondary amines to gain 15 novel compounds with the structure 5-substituted 5-(N,N-disubstituted aminomethyl)-2-[(4-carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones (93a-c). Altintas et al, 2005 [44].

![Diagram](image2.png)

Figure 20. Reaction of 2-[(4-carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones (92a-c) with formaldehyde and various secondary amines to give 93a-c.
2.18. Synthesis from Condensation Reaction of an Aromatic Amine 95, an Aldehyde 94 and a Mercaptoacetic Acid 96

4-thiazolidinones 97a-e were synthesized by the Katticarbodiimide (DCC) mediated one-pot three component condensation reaction of an aromatic amine 95, an aldehyde 94 and a mercaptoacetic acid 96. Zuhal Turgut et al. 2007 [45].

![Diagram of the reaction between an aromatic amine, an aldehyde, and a mercaptoacetic acid to form 4-thiazolidinones](image)

Figure 21. Reaction of an aromatic amine 95, an aldehyde 94 and a mercaptoacetic acid 96 to give thiazolidinone 97a-e

When the monoacids 99a,b were replaced by mercaptosuccinic acid 99c an interference of the additional carboxyl group with DCC was anticipated and therefore, a slightly different strategy was adopted. In this protocol, the synthesis of 1-thia-4-azaspiro[4.5]decan-3-ones 101a-e, 8-tert-butyl-1-thia-4-azaspiro[4.5]decan-3-one and N-Boc-protected 1-thia-4,8-diazaspiro[4.5]decan-3-one 103b was achieved by refluxing a mixture of amines 98b,c, mercaptosuccinic acid 99c and carbonyl compounds 100a-f in toluene for 10-12 hours.

Removal of the Boc group in 1-thia-4,8-diazaspiro[4.5]decan-3-one 103b with 20% hydrogen chloride/dioxane solution afforded the hydrochloride 104.

Tumul Srivastava et al. 2005 [46].

![Diagram of the synthesis of 1-thia-4-azaspiro[4.5]decan-3-ones](image)

Figure 22. Reaction of amines 98b,c, mercaptosuccinic acid 99c and carbonyl compounds 100a-f
2.20. Synthesis from 4-amino-5-phenyl-3,5-thiaaza-4-pentenoic Acid 107

The 2-phenylimino-1,3-thiazolidin-4-one 108 was obtained by thermal cyclization of 4-amino-5-phenyl-3,5-thiaaza-4-pentenoic acid 107 using DCC as dehydration agent. Treatment of 2-phenylimino-1,3-thiazolidin-4-one 108 with various hydrazonoyl halides (nitrilimines 4 precursor) yielded 6-aryl-9-phenyl 8-substituted-1,4,6,7,9-thiatetrazaspiro-[4.4]non-7-en-3-ones 110a-l.

2.21. Synthesis from Schiff bases (114a-h)

The 2-Amino-4-(2-naphthalenyl)thiazole 112 was dissolved in ethanol and was reacted with aromatic aldehyde 113 in the presence of piperidine to yield Schiff bases (114a-h). These Schiff bases on cyclo-condensation reaction with chloro acetyl chloride afford 2-azetidinone (115a-h) and with thioglycolic acid afford 4-thiazolidinone (116a-h) Mehta et al, 2006 [47].

3. Synthesis of β-lactam

3.1. Synthesis from α-diazo-acetamides:

Preferential Rh(II) carbenoidintramolecular C-H versus O-H insertion derived from α-diazo-acetamides can be achieved in water by creating a large hydrophobic environment around the reactive carbenoid center using an appropriate combination of the catalyst and amide groups.Candeias et al, 2006 [48].
3.2. Synthesis from 2-alkylideneazetidines

A chiral N-heterocyclic carbene catalyzed the Staudinger reaction of arylalkylketenes with a variety of N-tert-butoxycarbonylarylimines to give the corresponding cis-β-lactams in good yields with good diastereoselectivities and excellent enantioselectivities. Zhang et al., 2008 [50].

3.4. Synthesis from Staudinger Reactions by Using N-triflyl Protecting Group for the Imine

A catalytic enantioselective Staudinger reactions is described that preferentially furnish trans β-lactams. The use of an N-triflyl protecting group for the imine is crucial for the success of the reaction. Lee et al., 2005 [51].
3.5. Synthesis from [2 + 2] Cycloaddition of a Ketene with an Imine

The Staudinger synthesis, an overall [2 + 2] cycloaddition of a ketene with an imine, provides a nicely convergent route to biologically and synthetically interesting β-lactams. A planar-chiral derivative of 4-(pyrrolidino)pyridine serves as a very effective enantioselective catalyst coupling a range of symmetrical and unsymmetrical ketenes with various imines with very good stereoselection and yield. Hodous et al, 2002 [52].

![Figure 29. [2 + 2] cycloaddition of ketene with imine](image)

3.6. Synthesis by Microwave Irradiation of Diazoketones

The transformation of diazoketones to ketenes can be realized not only by utilizing photochemical reaction conditions but also under the action of microwave irradiation. In the presence of imines, the generated ketenes react further to afford β-lactams. Various trans-substituted β-lactams derived from amino acids have been prepared. Linder et al, 2001 [53].

![Figure 30. Microwave irradiation of diazoketene](image)

3.7. Synthesis by a Catalyzed Reaction of Ketenes and Imines Using Benzoylquinine

A practical methodology for the catalytic, asymmetric synthesis of β-lactams results from the development of a catalyzed reaction of ketenes (or their derived zwitterionenolates) and imines using benzoylquinine as chiral catalyst and proton sponge as the stoichiometric base. Taggi et al, 2002 [54].

![Figure 31. Reaction of ketene and imines using benzoylquinine](image)

3.8. Synthesis from N-Propargynucleobases

Several β-lactam nucleoside chimeras 140 (cis) and 141 (trans) were synthesized from the corresponding N-propargynucleobases via Kinugasa reaction in moderate yields. Initial screening for antibacterial activity against ampicillin sensitive E. coli showed weak activity for the uracil-β-lactam chimera. AmitBasak et al, 2005 [55].
3.9. Synthesis from Cycloaddition of Acetylenes with Nitrones

The group of Fu at MIT has improved a reaction known as the Kinugasa reaction, involving the cycloaddition of acetylenes with nitrones. By using a copper catalyst and a bisazoferrocene ligand, high yields of the β-lactam product are produced. The process is generally cis selective, and is quite versatile, although some yields are only in the 40-60% range Lo et al. 2002 [56].
3.10. Synthesis from 2-(2,4-dimethyl-3-phenyl-2H-isoxazol-5-ylidene)malonic Acid

2,4-Dimethyl-3-phenylisoxazole anhydrobases were easily prepared from the corresponding 5-chloroisoxazolium trifluoromethanesulfonate and carbon anions of 1,3-dioxo compounds in the presence of triethylamine. Photorearrangement of 2-(2,4-dimethyl-3-phenyl-2H-isoxazol-5-ylidene)malonic acid, diethyl ester gave a 4,5-dihydrofuroazetidinone in good yield. Donato et al, 2003 [57].

![Figure 34. Photorearrangement of 2-(2,4-dimethyl-3-phenyl-2H-isoxazol-5-ylidene)malonic acid, diethyl ester](image)

3.11. Synthesis from N-Acylimidazoles and Diarylimines

Reaction of N-acylimidazoles possessing an electron-withdrawing group in the α position with diarylimines produces β-lactams in high yields Moshe et al, 2006 [58].

![Figure 35. Reaction of N-acylimidazoles and diarylimines](image)

3.12. Synthesis from [2 + 2]-Cycloaddition Reaction

A new and effective proteasome inhibitor, β-lactam, has been accessed enantioselectively by multistep synthesis from the readily prepared intermediates and which were joined by a [2 + 2]-cycloaddition reaction to form the spiro β-lactam stereo selectively. The β-lactam is stable for many days in water at pH 7, in contrast to the natural β-lactones salinosporamide A (153) and omuralide (154). In common with 153 and 154, the β-lactam 155 effectively inhibits the mammalian proteasome Philip et al, 2005 [59].

![Figure 36. Synthesis of β-lactam 155 from [2+2]cycloaddition reaction of 153 and 154](image)

3.13. Synthesis from Substituted Acetic Acids and Alkoxymethylene-N,N-dimethyliminium Salts

A number of 2-azetidinones were synthesized in good to excellent yields by a novel reaction between Schiff bases, substituted acetic acids and alkoxymethylene-N,N-dimethyliminium salts, the adduct formed from DMF and O-alkylating agents. The advantages of this new method are mild reaction conditions, low cost, avoiding the use of chlorinating agents and easy purification of the products. The best results were obtained when DMF and dimethyl sulfate were used at room temperature. Aliasghar et al, 2009 [60].

A facile and efficient synthesis of substituted α-alkylidene-β-lactams have been developed via a NaOH-promoted intramolecularaza-Michael addition of α-carbamoyl, α-(1-chlorovinyl) ketene-S,S-acetals and subsequent nucleophilicvinyl substitution (S_NV) reaction in alcoholic aqueous media. Yang et al, 2008 [61].

3.15. Synthesis from Alkyloyl Chloride and Imine Derivatives

Trans-disubstituted β-lactams show increasing utility and prominence in numerous pharmaceutical applications, making their asymmetric synthesis an attractive goal for chemists. We introduce an anionic, nucleophilic catalyst system that provides an efficient, diastereoselective route to trans-disubstituted β-lactams, a complement to our previously described catalytic methodology for generating the corresponding cis diastereomers. This catalytic, “switch mechanism” process allows for flexibility in the stereo selective synthesis of β-lactams, producing either cis or trans products as desired from the same substrates.Anthony et al, 2005 [62].

[2+2] Carbonylative cycloaddition of chiral imines to various allyl halides, under CO pressure, in the presence of Et₃N, a catalytic amount of Pd(OAc)₂ and PPh₃ as ligand, are carried out. Separable diastereomeric mixtures of chiral alkenyl-β-lactams are isolated with good yields and high Trans diastereoselections. Absolute configurations are assigned by X-ray measurements and ¹H NMR spectroscopy. Luigino et al, 2004 [63].
3.17. Synthesis from 1-halo-3-aza-4-alkyl-1,3-dienes

Conrotatory ring closure of 1-halo-3-aza-4-alkyl-1,3-dienes in refluxing toluene gives rise to 3-halo-4-aryl-2-azetidinones in satisfactory yields. Dehalogenation of the resulting β-lactams by tris(trimethylsilyl)silane furnished 3-unsubstituted azetidinones, valuable intermediates in the synthesis of biologically active compounds. Elisa et al, 2000 [64].

3.18. Synthesis from Schiff's Bases and Alkoxy/Aryloxy Acetic Acids

Lawesson's reagent is found to be a unique reagent that provides a convenient route for the synthesis of β-lactams from Schiff's bases and alkoxy/aryloxy acetic acids. The process involves the formation of a titanium enolate of a mixed anhydride followed by condensation with imine to afford β-lactam. Sharma et al, 2004 [65].

3.19. Synthesis of Pharmaceutically Important α-hydroxy (or t-butyldimethylsilyl protected α-hydroxy)-β-lactams

The synthesis of pharmaceutically important α-hydroxy (or t-butyldimethylsilyl protected α-hydroxy)-β-lactams with functionalized chains in position 4 of the azetidinone ring. A convenient and high-yielding route to these compounds was developed and optimized. Preparation and characterization of several new enantiopure title compounds with various functional groups are discussed.Yan Yang et al, 2007 [66].
3.20. Synthesis of Macro cyclic β-lactams

A new approach to N1-C3 bridged macro cyclic β-lactams has been developed. Orthogonal functional groups’ protection combined with RCM has allowed the construction of the bicyclic systems bearing a β-lactam motif. These systems could represent a structural alternative to the actual lactamic antibiotics and may be further transformed into a broad variety of compounds. Miguel et al, 2008 [67].

![Synthesis of bicyclic systems bearing β-lactam](image)

Fig. 44. Synthesis of bicyclic systems bearing β-lactam

3.21. Synthesis from 4-exo-digonal Cyclization Using Palladium Acetate as the Catalyst

Functionalized gem-difluoro β- and γ-lactams were synthesized through a novel intramolecular hydroamination reaction of difluoropropargyl amides. β-Lactams were obtained via a Baldwin disfavored 4-exo-digonal cyclization using palladium acetate as the catalyst, whereas γ-lactams were produced under basic conditions. Acid hydration of γ-lactams produced ketoamides or hemiaminals selectively Santos et al, 2007 [68].

![Synthesis from 4-exo-digonal cyclization using palladium acetate as the catalyst](image)

Figure 45. Synthesis from 4-exo-digonal cyclization using palladium acetate as the catalyst

3.22. Synthesis from l-serine Using a Zinc-Mediated Coupling Reaction

Synthesis of (−)-tabtoxinine-β-lactam 187, the cause of tobacco wildfire disease, was achieved from l-serine using a zinc-mediated coupling reaction, Sharpless asymmetric dihydroxylation and lactamization of N-OBn amide as the key steps Hiromasa Kiyota et al, 2004 [69].

![Synthesis from l-serine using a zinc-mediated coupling reaction](image)

Figure 46. Synthesis from l-serine using a zinc-mediated coupling reaction

Novel polyfunctionalized N-alkyl-β-lactams were prepared with high stereoselectivity in an efficient manner by a palladium-catalyzed [2+2] carboxylative cycloaddition of allyl bromide with heteroarylidene N-alkyl-amines. The type of alkyl group linked to the nitrogen atom influences the reaction stereoselectivity. Moreover, the C-3 and the C-4 positions of the azetidine ring can be further stereoselectively functionalized inserting various groups through the generation of a stable azetidinylcarbanion and then captured by various electrophiles Luigino Troisi et al, 2008 [70].

![Synthesis by a Palladium-catalyzed [2+2] Carboxylative cycloaddition of Allyl Bromide with Heteroarylidene N-alkyl-amines](image)
3.24. Synthesis from Dimethoxycarbene with Isocyanates

Highly substituted β-lactams have been isolated as the major product of the reaction of dimethoxycarbene with selected isocyanates. This reaction offers the potential for rapid access into a variety of highly functionalized species James et al, 2006 [71].

\[
\text{R-N=C=O} + \text{MeO} \xrightleftharpoons{\text{reflux}} \text{R-N=C-O} \text{MeO} \text{MeO} \text{MeO}
\]

49-88%

3.25. Synthesis from cyclization of Optically Pure \(N-(p\text{-methoxybenzyl})-N-(2\text{-chloro})\) Propionyl Amino Acid Derivatives

The base-promoted cyclization of optically pure \(N-(p\text{-methoxybenzyl})-N-(2\text{-chloro})\)propionyl amino acid derivatives resulted in a diastereo- and enantioselective approach to valuable 1,3,4,4-tetrasubstituted β-lactams. The stereochemical outcome of the reaction is exclusively governed by the configuration of the \(N-(2\text{-chloro})\)propionyl moiety. Paula Pérez-Faginas et al, 2007 [72].

\[
\text{Cl} \text{(s)} \text{Me} \text{(s)} \text{R} \text{N} \text{Me} \xrightarrow{\text{MeCO}_2} \text{Cl} \text{(s)} \text{Me} \text{(s)} \text{R} \text{N} \text{Me} \text{Me}
\]

3.26. Synthesis from reaction of Schiff’s Bases with Chloroacetyl Chloride

Further, reaction of the Schiff’s bases with one mole of chloroacetyl chloride in ethanol solution in the presence of triethylamine as catalyst leads to the β-Lactam derivatives 201,203. Soleiman et al, 2002 [26].
3.27. Synthesis from Schiff’s Bases 12 with Chloroacetylchloride

It is interesting to mention that along with efficient strategy for synthesis of new heterocyclic by
cyclocondensation, reaction of compound (10) with different nitroso compounds 11 produced the new compound(12) which is used in synthesis of b-lactam (204). ELKanzi et al, 2007 [27].

3.28. Synthesis from Schiff’s Bases 16 with Chloroacetylchloride

The reaction of 276 a-c with equimolar ratios of chloroacetylchloride in mixture of ethanol and DMF in the presence of piperidine catalyst afforded lactam derivatives (417). ELKanzi et al, 2007 [28].
3.29. Synthesis from Cycloaddition of Compound 206a-d with Chloroketene

Compound (206a-d) underwent cycloaddition with chloroketone to give spiro lactam. The cycloaddition proceeded smoothly in dimethylformamide in the presence of triethylamine catalyst to afford (209 a-d). Khalafallah et al., 2006 [73].

![Diagram of compound 206a-d with chloroketene](image)

(a-d)

a R = 2-CH, 3,4-benzo-substituted
b R = 2-CH, 5,6- benzo-substituted
c R = 4-OH
d R = 4-N(CH3)2

Figure 53. Reaction of compound 206a-d with chloroketene

3.30. Synthesis from Reaction of Cycloheptyl Acid Chloride 210 or Cyclohexyl Acid Chloride 212 with Imine

The spiro β-lactams 211 and 213 were prepared by reaction of either cycloheptyl acid chloride 210 or cyclohexyl acid chloride 212 with imine, respectively (Scheme 92). In a typical procedure, the acid chloride was added to a stirred, refluxing solution of the imine and triethylamine in toluene. After refluxing the solution overnight and an aqueous work-up, spiro β-lactams 11 and 13 were obtained in moderate yields and trash amount of side products were detected in TLC. The spiro β-lactams 211 and 213 are the expected products of the [2+2] cycloaddition reaction of imine with the cyclic ketenes intermediate. Sun Joo Oh et al., 2007 [74].

![Diagram of reaction of cycloheptyl acid chloride 210 or cyclohexyl acid chloride 212 with imines](image)

Figure 54. Reaction of cycloheptyl acid chloride 210 or cyclohexyl acid chloride 212 with imines

3.31. Synthesis from Fmoc Aminoacid

For immobilization of the starting material, Fmoc-aminoacid, both Wang resin as well as JandaJel resin were used. Wang resin consists of a basic structure of polystyrene cross-linked with divinylbenzene, and a 4-hydroxybenzyl group as linker. "JandaJel" resin (Toy and Janda, 1999) is an interesting alternative since polymer matrix is a polystyrene resin cross-linked with 1,4-cis (vinylphenoxy)butane, which increases twice its swelling capacity with respect to common resins. This increase in swelling capacity implies a better contact between reagents and substrate linked to the resin. Then the amino group is deprotected, usually with 30% piperidine in DMF.
The amino group release can be monitored by the Kaiser test (Kaiser et al, 1970). The amine linked to solid.

Support is transformed in an imine by condensation with an aldehyde in a 1% v/v AcOH solution. Afterwards, β-lactamic ring formation is carried out by the Staudinger methodology, which involves the reaction of imine linked to the solid support with a ketene, in situ generated from an acid chloride and triethylamine as base. Infrared spectrum of solid phase product shows a peak at approx. 1770 cm$^{-1}$, accounting for a β-lactam carbonyl. Finally, resin separation depends on the linker that connects the polymer matrix and the substrate. In the case of using Wang resin, β-lactam is released using a 10% v/v trifluoroacetic acid (TFA) solution in dichloromethane. The acid obtained was methylated with diazomethane. Pablo et al, 2007 [75].

Figure 55. Synthesis from Fmoc-aminoacid

3.32. Synthesis from Imines with Ethyl Bromoacetate

Reaction of various imines with ethyl bromoacetate in the presence of indium metal using anhydrous tetrahydrofuran as the solvent produced the β-lactams 221.Bimal et al, 2000 [76].

Figure 56. Reaction of imines with bromoacetate in presence of of indium metal using anhydrous tetrahydrofuran as the solvent produced the β-lactams 221

3.33. Synthesis from Phenylacetyl Chloride and BQ(223)

BQ (223a) serves as an excellent shuttle base when added to the solution of phenylacetyl chloride 222c and 224 in toluene at low temperature; a yellow solution of phenylketene was formed along with a white precipitate over the course of a few minutes Imino ester 225a was then added to the solution at -78 C, and characteristic ketene color disappeared over the course of 2 h to give cis-lactam 226c in 96% ee (65% yield,). In this reaction, BQ plays two distinct catalytic roles as a dehydrohalogenation agent and a nucleophilic catalyst. We obtained other β-lactams from a variety of in situ generated Andrew et al,2000 [77].
3.34. Synthesis from Compounds 228 and (4R)-phenyloxazolidylacetyl Chloride 229

Compound 228 (0.35g, 1mmol) was reacted with (4R)-phenyloxazolidylacetyl chloride 229 (0.38g, 1.58mmol) in the presence of Et₃N in CH₂Cl₂ for 24h to produce the 1,5-benzothiazepine-β-lactam. The triethylamine salt was removed by filtration, the CH₂Cl₂ solution was evaporated and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1:2) to produce product 230. The single crystal suitable for X-ray analysis was obtained by slowly evaporating an ethyl acetate-petroleum ether solution in the air. Zhang et al., 2002 [78].

3.35. Synthesis from Compound 234a-h with Chloroacetyl Chloride

2-Aminobenzothiazole-6-carboxylic acid 231. This compound, on condensed with chloroacetyl chloride yielded 2-(2-chloroacetylamino) benzothiazole-6-carboxylic acid 232. Compound 232 on amination with hydrazine hydrate afforded 2-(2-hydrazinoacetylamino) benzothiazole-6-carboxylic acid 233. The condensation reaction of compound 233 with various aromatic aldehydes yielded 2-{2-[N′-(arylidene)hydrazino] acetylamino}- benzothiazole-6-carboxylic acids 234a-h. Compounds 234a-h, on reaction with chloroacetyl chloride in the presence of triethylamine underwent dehydrativeannulation to afford 2-{2-[3-chloro-2-(aryl)-4-oxoazetidin-1-ylamino]acetylamino} benzothiazole-6-carboxylic acids 235a-h. These reactions are summarized in Ameya et al, 2007 [79].
3.36. Synthesis from Reaction of Ketene 236 and Imines 237

Only one method has been described for the diastereomeric and enantioselective synthesis of R,R-disubstituted-\(\alpha\)-lactams through a catalytic asymmetric Staudinger reaction; as indicated, this process preferentially affords the cis isomer Elaine et al, 2005 [80].

![Reaction of ketene and imines afford B-lactam](image)

3.37. Synthesis from coupling of Ketenes with \(N\)-tosyl Imines

While attempting to improve upon the process illustrated in eq 1, we made the exciting discovery that the cis/trans selectivity of Staudinger reactions catalyzed by PPY derivative 1 (PPY) 4-(pyrrolidinopyridine) can be effectively controlled through the appropriate choice of the \(N\)-protecting group of the imine. Thus, ketenes couple with \(N\)-tosyl imines to predominantly generate cis \(\alpha\)-lactams, whereas reactions with \(N\)-triflyl imines preferentially furnish the trans isomers Elaine et al, 2005 [80].

![Coupling of ketenes with \(N\)-tosyl imines](image)

3.38. Synthesis from 3,3-diethoxy-2,2-dimethylpropionic acid ethyl ester 244 with \(p\)-anisidine245 gave 3-(4-methoxyphenylimino)-2,2-dimethylpropionic acid ethyl ester 246, which was used in the following step without purification. Cycloaddition of 246 with the in-situ-generated acetoxyacetyl chloride253 in the presence of anhydrous triethylamine gave acetyl \(\beta\)-lactam 250(PMP = \(p\)-methoxyphenyl) in 53% yield after two steps.Yan et al, 2005 [81].

![Coupling of ketenes with \(N\)-tosyl imines](image)
3.39. Synthesis from Isonicotinamide

To establish the feasibility of cyclizing a lithiated benzyl group onto a pyridine ring, the isonicotinamide was made using standard methods and treated with excess LDA at 0°C. A red-brown organolithium was formed, presumably. Stirring for 1 h at 0°C and neutral workup yielded a product resulting from dearomatizing cyclization of 257 into the 3-position of the pyridine ring and protonation of the resulting enolate 258. Hydrolysis of the unstable amidate 258a on purification by chromatography on silica yielded the stable lactam 259a as a single diastereoisomer. Alkylating the enolate 258 with methyl iodide or acylating with methyl chloroformate gave, after hydrolysis, lactams 260b and 260c, respectively, as single diastereoisomers.

Jonathan et al, 2005 [82].
4. Conclusion

In this review different method for synthesis of thiazolidinoline and 2-lactam were discussed like a series of 4-thiazolidinolines and 2-azetidinones have been synthesized by condensation of 4,4'-diaminodiphenylsulphone with various aromatic or heterocyclic aldehydes to yield the Schiff's bases (26). Cyclocondensation of Schiff's bases with 2-mercapto-propionic acid afforded 4-thiazolidinone derivatives (27), and cyclocondensation of Schiff's bases with chloroacrylchloride in presence of triethylamine afforded 2-azetidinone derivatives (28). All these compounds were evaluated for their in vitro growth-inhibitory activity against several microbes. Standard ampicillin against Bacillus subtilis.

References

