On Fixed Points for Chatterjea’s Maps in b-Metric Spaces

Radka Koleva, Boyan Zlatanov

1Department of Mathematics and Physics, University of Food Technologies, Plovdiv, Bulgaria
2Faculty of Mathematics and Informatics, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
*Corresponding author: r.p.koleva@gmail.com

Received January 30, 2016; Revised April 02, 2016; Accepted April 09, 2016

Abstract In this paper we find sufficient conditions for the existence and uniqueness of fixed points of Chatterjea’s maps in b-metric space. These conditions do not involve the b-metric constant. We establish a priori error estimate for the sequence of successive iterations. The error estimate, which we present is better that the well-known one for a wide class of Chatterjea’s maps in metric spaces.

Keywords: fixed point, Chatterjea’s map, b-Metric space, a priori error estimate

1. Introduction

Fixed point theory has got wide applications in different branches of mathematics. Since the work of S. Banach [3] known as the Banach Contraction Principle, many mathematicians have extended and generalized the results in [3]. Some of the classical generalizations of [3] are presented in [14]. The concept of a b-metric space as a generalization of a metric space is introduced in [2] and a contraction mapping theorem is proved there. Since then results about fixed points, variational principles and applications were obtained in b-metric spaces. We will cite just a few recent results in these directions [1,5,7,8,9,10,11,12,13,16].

We recall some definitions and properties for b-metric spaces [12,13,16].

Definition 1.1. Let X be a non-empty set, $s \geq 1$. A functional $\rho: X \times X \to \mathbb{R}$ is called a b-metric if it satisfies the following conditions:

$\rho(x,y) \geq 0$ for all $x,y \in X$ and $\rho(x,y) = 0$ iff $x = y$;

$\rho(x,y) = \rho(y,x)$ for all $x,y \in X$;

$\rho(x,y) \leq s(\rho(x,z) + \rho(z,y))$ for all $x,y,z \in X$.

The ordered pair (X, ρ) is called a b-metric space (with constant s).

Any metric space is a b-metric space with $s = 1$. An example of b-metric space is \mathbb{R} endowed with the b-metric function $\rho_p(x,y) = |x-y|^p$ for $p \in [1, +\infty)$. It is easy to see that in this case $s = 2^{p-1}$.

Other classical example of b-metric space is \mathbb{R} endowed with the b-metric function $\rho_p(x,y) = |x-y|^p$ for $p \in [1, +\infty)$. It is easy to see that in this case $s = 2^{p-1}$ and for $p = 1$ we get the metric space of the real numbers with a metric $\rho_1(x,y) = |x-y|$.

Definition 1.2. Let (X, ρ) be a b-metric space.

A sequence $\{x_n\}_{n=1}^\infty$ is called ρ-convergent if there exists $x \in X$, such that for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that the inequality $\rho(x_n, x) < \varepsilon$ holds true for all $n \geq N$.

A sequence $\{x_n\}_{n=1}^\infty$ is called ρ-Cauchy sequence if for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that the inequality $\rho(x_n, x_m) < \varepsilon$ holds true for all $n > m \geq N$.

The b-metric space (X, ρ) is called complete b-metric space if any Cauchy sequence is convergent;

A subset $A \subseteq X$ is called ρ-bounded if $\sup \{\rho(x,y) : x,y \in A\} < \infty$;

If the set A is ρ-bounded then the number $\sup \{\rho(x,y) : x,y \in A\}$ is called its ρ-diameter and is denoted with $\delta_b(A)$.

A subset $A \subseteq X$ is called ρ-closed if for any convergent sequence $\{x_n\}_{n=1}^\infty \subseteq A$ the convergence $\lim_{n \to \infty} x_n = x$ implies $x \in A$.

A b-metric function ρ is called continuous if for any $y \in X$ and any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon,y) > 0$ such that there holds the inequality $|\rho(x,y) - \rho(y,z)| < \varepsilon$ provided that $\rho(x,z) < \delta$. It is easy to observe that if ρ is continuous and x_n is ρ-convergent to x then $\rho(y,x_n) \to \rho(y,x)$.
Every b-convergent sequence in b-metric space is a b-Cauchy sequence. If a sequence is a b-convergent in b-metric space then its limit is unique. In general a b-metric function is not continuous [5,10].

As far as we will consider only b-metrics we will omit the letter b in the above definitions.

Definition 1.3. ([14]) Let (X, ρ) be a metric space. A map $T : X \to X$ is a Hardy Rogers map is there exist nonnegative constants a_i , $i=1,2,3,4,5$ satisfying

$$\sum_{i=1}^{5} a_i < 1$$

such that for each $x,y \in X$ the inequality

$$\rho(Tx,Ty) \leq a_1 \rho(x,y) + a_2 \rho(x,Tx) + a_3 \rho(y,Ty) + a_4 \rho(x,Ty) + a_5 \rho(y,Ty)$$

holds for all $x,y \in X$.

As pointed in [15] from the symmetry of the function ρ it follows that $a_3 = a_2$ and $a_4 = a_5$. Therefore if T is a Hardy-Rogers contraction then exist $k_1, k_2, k_3 \geq 0$, such that $k_1 + 2k_2 + 2k_3 < 1$ and there holds the inequality

$$\rho(Tx,Ty) \leq k_1 \rho(x,y) + k_2 (\rho(x,Tx) + \rho(y,Ty)) + k_3 (\rho(x,Ty) + \rho(y,Tx))$$

Generalizations of Hardy Rogers map in b-metric space are investigated in [8,13].

If $k_1 = k_2 = 0$ and $k_3 \in (0,1/2)$ in the above inequality we get a generalization of Chatterjea’s map [6] in b-metric space.

Definition 1.4. Let (X, ρ) be a b-metric space. A map $T : X \to X$ is called Chatterjea’s map if there exists $k \in [0,1/2)$ such that the inequality

$$\rho(Tx,Ty) \leq k (\rho(Tx,y) + \rho(Ty,x))$$

holds for all $x,y \in X$.

We will denote for the rest of the article $\alpha = \frac{k}{1-k}$, where k is the constant from the definition of Chatterjea’s map. From $k \in [0,1/2)$ it follows that $\alpha \in [0,1)$.

2. Fixed Points for Chatterjea’s Maps in b-Metric Spaces

Theorem 2.1. Let (X, ρ) be a complete b-metric space, ρ be a continuous function, $T : X \to X$ be a Chatterjea’s map, such that the inequality $\sup_{n \in \mathbb{N}} \{ \rho(T^n x,x) \} < \infty$ holds for any $x \in X$. Then

(i) there exists a unique fixed point say ξ of T;

(ii) for any $x_0 \in A$ the sequence $\{x_n\}_{n=1}^{\infty}$ converges to ξ, where $x_{n+1} = Tx_n$, $n = 0,1,2,...$;

(iii) there holds the a priori error estimate

$$\rho(\xi,T^m x) \leq \alpha^m \sup_{j \in \mathbb{N}} \rho(T^j x,x).$$

Lemma 2.2. Let (X, ρ) be a b-metric space and let $T : X \to X$ be a Chatterjea’s map. Then for any $x \in X$ there holds the inequality

$$\rho(T^n x,x) \leq \left(\frac{k}{1-k} \right)^m \sup_{2 \leq j \leq n} \{ \rho(T^j x,x) \}$$

(2.2)

for any $n > m \geq 1$.

Proof. Let us denote $r_n(x) = \rho(T^n x,x)$ and $x_{m,n} = \rho(T^m x,T^n x)$. We consider the sequence

$$x_{2,1}, x_{3,1}, x_{3,2}, ..., x_{n-1,n-2}, x_{n-1,n}, x_{n,2}, ..., x_{n-1,n-1}, x_{n+1,1}, ...$$

(2.3)

We will prove inequality (2.2) by induction on the sequence (2.3). Let us denote by i the sum of the indices of the sequence in (2.3).

Let $i = 3$, i.e. $n = 2$ and $m = 1$. Then

$$x_{2,1} \leq k(2 \rho(T^2 x,x)).$$

Let $i = 4$, i.e. $n = 3$ and $m = 1$. Then

$$x_{3,1} \leq k^2 (x_{3,1} + x_{2,1}) \leq k (1 + \frac{k}{1-k}) \sup_{2 \leq j \leq 3} r_j(x)$$

$$= \frac{k}{1-k} \sup_{2 \leq j \leq 3} \rho(T^j x,x).$$

Let inequality (2.2) holds for $i = p$.

We will prove that (2.2) holds true for $i = p + 1$. Let $n + m = p$. There are two cases: If $m < n$ then we consider $x_{n,m+1}$, if $m = n - 1$ then we consider $x_{n+1,1}$.

Case I) There are two subcases: $m < n - 2$ and $m = n - 2$.

Let first $m < n - 2$. Then

$$x_{n,m+1} \leq k (x_{n,m} + x_{n-1,m+1})$$

$$\leq k \left(\frac{k}{1-k} \right)^m \sup_{2 \leq j \leq n} r_j(x)$$

$$+ \left(\frac{k}{1-k} \right)^{m+1} \sup_{2 \leq j \leq n-1} r_j(x)$$

$$= k \left(\frac{k}{1-k} \right)^m \left(1 + \frac{k}{1-k} \right) \sup_{2 \leq j \leq n} r_j(x)$$

$$= \left(\frac{k}{1-k} \right)^{m+1} \sup_{2 \leq j \leq n} \rho(T^j x,x).$$

Let now $m = n - 2$. Then

$$x_{n,m+1} \leq k (x_{n,m} + x_{n-1,m+1}) = k x_{n,m}$$

$$\leq k \left(\frac{k}{1-k} \right)^m \sup_{2 \leq j \leq n} r_j(x)$$

$$= \left(\frac{k}{1-k} \right)^{m+1} \sup_{2 \leq j \leq n} \rho(T^j x,x).$$

Case II)
\[x_{n+1} \leq k \left(r_{n+1}(x) + x_{n+1} \right) \]

\[\leq k \left(\sup_{2 \leq j \leq n+1} r_j(x) + \frac{k}{1-k} \sup_{2 \leq j \leq n} r_j(x) \right) \]

\[= k \left(\frac{1}{1-k} \sup_{2 \leq j \leq n+1} r_j(x) \right) \]

\[= \frac{k}{1-k} \sup_{2 \leq j \leq n+1} \rho(T^jx, x). \]

Proof of Theorem 2.1 (i) Let \(x \in X \) be arbitrary.

Let us put \(M = \sup_{j \geq 2} \rho(T^jx, x) \). From Lemma 2.2 we have that the inequality

\[\rho(T^n, T^m) \leq \alpha^m \sup_{2 \leq j \leq n} \rho(T^j, x) \leq \alpha^m M \]

holds for every \(n > m \geq 1 \). Consequently the sequence \(\{T^n\}_{n=1}^{\infty} \) is a Cauchy sequence. From the assumption that \(X \) is complete b-metric space it follows that the sequence \(\{T^n\}_{n=1}^{\infty} \) is b-convergent. Therefore it follows that there exists \(\xi = \lim T^n x \in X \). Let us fix \(n \in \mathbb{N} \). After taking a limit on \(m \to \infty \) from the assumption that the b-metric is continuous and using that \(T \) is Chatterjea’s map we get the inequality

\[\rho(T^n, T^m) = \lim_{m \to \infty} \rho(T^n, T^m) \leq \lim_{m \to \infty} \left(k \left(\rho(T^n, T^{m-1}) + \rho(T^{m}, x) \right) \right) \]

\[= k \left(\rho(T^n, x) + \rho(T^{m}, x) \right) = k \rho(T^n, x) \]

and therefore \(\rho(T^n, x) = 0 \) i.e. \(\xi \) is a fixed point for \(T \).

Let suppose that there are two fixed points \(\xi \neq \eta \). Then from the inequality

\[\rho(\xi, \eta) = \rho(T^n\xi, T^n\eta) \leq k(\rho(T^n\xi, \eta) + \rho(T^n\eta, \xi)) \]

\[= 2k \rho(\xi, \eta) \]

and the assumption that \(k \leq 0.1/2 \) it follows that \(\xi = \eta \).

(ii) The proof follows from (i), because any sequence \(\{T^n x_0\}_{n=1}^{\infty} \) is convergent to the fixed point of \(T \), which is unique.

(iii) Let \(x \in X \) be arbitrary. From Lemma 2.2 we have the inequality

\[\rho(T^n, T^m) \leq \alpha^m \sup_{j \in \mathbb{N}} \rho(T^j, x) \]

holds for every \(n > m \geq 1 \) and every \(x \in X \). From (ii) it follows that the sequence \(\{T^n x\}_{n=1}^{\infty} \) converges to the unique fixed point \(\xi \). Therefore using the continuity of \(\rho \) and Lemma 2.2 we get

\[\rho(\xi, T^m x) = \lim_{n \to \infty} \rho(T^n, T^m x) \leq \alpha^m \sup_{j \in \mathbb{N}} \rho(T^j, x). \]

As far as any metric space is a b-metric space, then Theorem 2.1 holds true for arbitrary metric space. If \((X, d) \) is a complete metric space and \(T \) be Chatterjea’s map then the a priori error estimate is well known [4]

\[d(\xi, T^n x) \leq \frac{\alpha^m}{1 - k} d(Tx, x). \]

If we assume that \(\sup \rho(T^n x, x) \leq \rho(Tx, x) \) then we will get from Theorem 2.1 the a priori estimate

\[\rho(\xi, T^n x) \leq \alpha^m \rho(Tx, x). \]

Let us mention that in this case the a priori estimate (2.5) is better than (2.4).

Let \(\epsilon \in (0, \rho(Tx, x)) \), \(m_{\alpha} \in \mathbb{N} \) be the smallest number, that satisfies (2.5) and \(n_{\alpha} \in \mathbb{N} \) be the smallest number, that satisfies (2.4). Then

\[n_{\alpha} - m_{\alpha} \geq \frac{\log \left(\frac{1 - \alpha}{\rho(Tx, x)} \right)}{\log \alpha} + 1 \]

\[= \frac{\log(1 - \alpha)}{\log \alpha} - 1. \]

If \(k \) gets close to \(1/2 \) then \(\alpha \) gets closer to \(1 \) and therefore \(n_{\alpha} - m_{\alpha} \) gets closer to infinity.

We would like to point out that if the space is a metric space than using the triangle inequality we can obtain (2.5) from (2.1).

Example 2.3. Let us consider the b-metric space \((\mathbb{R}, \rho_p) \) for \(p \geq 1 \). Let \(0 < \alpha < \beta \) be two arbitrary positive real numbers. Let us define the map \(T_\alpha^\beta : [0, +\infty) \to [0, +\infty) \), by \(T_\alpha^\beta x = \left\{ \begin{array}{ll} \alpha, & x \in [\beta, +\infty) \\ 0, & x \in [0, \beta) \end{array} \right. \)

(Figure 1), which is a variation of the classical examples from [14]. It is well known that \(T_{\alpha/2}^\beta \) is Chatterjea’s map and \(T_{1/2}^\beta \) is not Chatterjea’s map in the metric space \((\mathbb{R}, \rho_p) \) [14]. It is easy to observe that the Picard iteration sequence \(x_n = T_{\alpha/2}^\beta x_{n-1} \) converges to the fixed point \(x = 0 \) for any initial point \(x_0 \in [0, +\infty) \).

![Figure 1](image.png)

If \(x, y \in [0, \beta) \) or \(x, y \in [\beta, +\infty) \), then \(T_\alpha^\beta \) satisfies the condition in Definition 1.4 for any \(k \in [0, \frac{1}{2}) \), because
\[\rho_p(Tx, Ty) = |x - y|^p = 0.\] If \(y \in [0, \beta) \) and \(x \in [\beta, +\infty) \), then we get \(\rho_p(Tx, Ty) = |x - y|^p + \rho^p \) and \(\rho_p(Tx, Ty) = \alpha^p \). Using the inequality

\[
\inf \left\{ |x - y|^p + x^p : y \in [0, \beta), x \in [\beta, +\infty) \right\} = \beta^p
\]

we get that there holds \(\rho_p(Tx, Ty) = \alpha^p \leq k \beta^p \leq k \left(\rho_p(Tx, Ty) + \rho_p(Ty, x) \right) \).

Consequently for any map \(T_\alpha^\beta \) we can endow \((\mathbb{R}, \rho_\alpha)\) with a suitable b-metric \(\rho_p(x - y) = |x - y|^p \) so that \(T_\alpha^\beta \) to satisfy the condition in Definition 1.4 in \((\mathbb{R}, \rho_\alpha)\).

Let us consider the particular case \(2\alpha \geq \beta \) and \(p > 1 \).

If we choose in this case \(k \geq \left(\frac{\alpha}{\beta} \right)^p \geq \left(\frac{1}{2} \right)^p \in \left[0, \frac{1}{2} \right) \), provided that we have considered the b-metric space \((\mathbb{R}, \rho_p)\), \(p > 1 \), then \(k \alpha \geq \frac{1}{2} \), because \(s = 2^{p-1} \) in \((\mathbb{R}, \rho_p)\). Consequently \(T_\alpha^\beta \) does not satisfy the conditions in (16) Theorem 3) for any \(p \in (0, +\infty) \) in \((\mathbb{R}, \rho_p)\) and thus Theorem 2.1 extends (12) Theorem 3) in the case when \(n \in \mathbb{N} \).

In the particular case \(T_{1/2} \) we get that \(k \alpha = \frac{1}{2} \), provided that \(k \) is chosen so that inequality (2.6) to hold in \((\mathbb{R}, \rho_p)\) and therefore (12) Theorem 3) could not be applied.

When applying fixed point theorems for approximating of a solution of the equation \(Tx = x \) we usually find an initial starting point \(x_0 \), which belongs to a neighborhood \(U \) of the solution \(\xi \), such that \(T : U \to U \) and \(U \) is bounded and closed. Thus the next Corollary can be applied in a wide class of problems.

Corollary 2.3. Let \((X, \rho)\) be a complete b-metric space, \(\rho \) be a continuous function, \(A \subseteq X \) be a b-bounded and b-closed set, \(T : A \to A \) be Chatterjea’s map. Then there exists a unique fixed point say \(\xi \) of \(T \); for any \(x_0 \in A \) the sequence \(\{x_n\}_{n=1}^{\infty} \) converges to \(\xi \), where \(x_{n+1} = Tx_n \), \(n = 0, 1, 2, \ldots \);

there holds the a priori error estimate

\[
\rho \left(\xi, T^n x \right) \leq a_\alpha^m \rho_b(A).
\]

Acknowledgement

We would like to thank the anonymous reviewer for the valuable suggestions that have improved the article.

The second author is partially supported by Plovdiv University “Paisii Hilendarski” NPD Project NI 15 – FMI 004.

References