q-Bernstein-Type Polynomials for Functions of Two Variables with Their Generating and Interpolation Functions

Mehmet ACIKGOZ¹, Erdoğan ŞEN², Serkan ARACI³,*

¹University of Gaziantep, Faculty of Arts and Science, Department of Mathematics, Gaziantep, Turkey
²Department of Mathematics, Faculty of Science and Letters, Namik Kemal University, Tekirdağ, Turkey
³ Atatürk Street, Hatay, Turkey
*Corresponding author: mtsrkn@hotmail.com

Received September 15, 2013; Revised October 25, 2013; Accepted November 04, 2013

Abstract The aim of this paper is to give a new approach to modified q-Bernstein polynomials for functions of two variables. By using these type polynomials, we derive recurrence formulas and some new interesting identities related to the second kind Stirling numbers and generalized Bernoulli polynomials. Moreover, we give the generating function and interpolation function of these modified q-Bernstein polynomials of two variables and also give the derivatives of these polynomials and their generating function.

Keywords: generating function, Bernstein polynomial of two variables, Bernstein operator of two variables, shift difference operator, q-difference operator, second kind Stirling numbers, generalized Bernoulli polynomials, Mellin transformation, interpolation function

Cite This Article: Mehmet ACIKGOZ, Erdoğan ŞEN, and Serkan ARACI, “q-Bernstein-Type Polynomials for Functions of Two Variables with Their Generating and Interpolation Functions.” Turkish Journal of Analysis and Number Theory 1, no. 1 (2013): 36-42. doi: 10.12691/tjant-1-1-8.

1. Introduction, Definitions and Notations

In approximation theory, the Bernstein polynomials, named after their creator S. N. Bernstein in 1912, have been studied by many researchers for a long time. But nothing about generating function of Bernstein polynomials were known in the literature. Recently, Simsek and Acikgoz, ([18]), constructed a new generating function of (q-) Bernstein type polynomials based on the q-analysis. They gave some new relations related to (q-) Bernstein type polynomials, Hermite polynomials, Bernoulli polynomials of higher order and the second kind Stirling numbers. By applying Mellin transformation to this generating function they defined the interpolation function of (q-) Bernstein type polynomials. They gave some relations and identities on these polynomials. They constructed the generating function for classical Bernstein polynomials, and for Bernstein polynomials for functions of two variables and gave their properties (see [8,9,10], for details). In [1-7], T. Kim also gave a novel definition of q-Bernstein polynomials and derived not only new but also interesting properties of q-Bernstein polynomials. Actually, we are motivated to write this paper from Kim's arithmetic works.

Throughout this paper, we use some notations like N, N₀ and D, where N denotes the set of natural numbers, N₀ := N∪{0} and D = [0,1].

Let C(D×D) denotes the set of continuous functions on D. For f ∈ C(D×D)

B_{n,m}(f;x,y) := \sum_{k=0}^{n} \sum_{j=0}^{m} \binom{n}{k} \binom{m}{j} x^k y^j (1-x)^{n-k} (1-y)^{m-j} (1.1)

B_{k,j,n,m}(x,y) := \frac{n(n-1)\cdots(n-k+1)}{k!} B_{n,m}(f;x,y) (1.2)

where \binom{n}{k} = \frac{n!}{k!(n-k)!}. Here B_{n,m}(f;x,y) is called the Bernstein operator of two variables of order n+m for f. For k,j,n,m ∈ N₀, the Bernstein polynomial of two variables of degree n+m is defined by

B_{k,j,n,m}(x,y) := \binom{n}{k} \binom{m}{j} x^k y^j (1-x)^{n-k} (1-y)^{m-j} (1.3)

where x ∈ D and y ∈ D. Thus, throughout this work, we will assume that x ∈ D and y ∈ D. Then, we easily see the following

B_{k,j,n,m}(x,y) = B_{k,n}(x,y) B_{j,m}(x,y)
and they form a partition of unity; that is,
\[
\sum_{k=0}^{n} \sum_{j=0}^{m} B_{k,j,n,m}(x,y) = 1
\]
(1.4)
and by using the definition of Bernstein polynomials for functions of two variables, it is not difficult to prove the property given above as
\[
\sum_{k=0}^{n} \sum_{j=0}^{m} B_{k,n}(x,y) B_{j,m}(x,y) = 1.
\]
(1.5)

Some Bernstein polynomials of two variables are given below:
\[
B_{0,0,1,0}(x,y) = (1-x), \\
B_{0,0,0,1}(x,y) = (1-y), \\
B_{0,0,1,1}(x,y) = (1-x)(1-y), \\
B_{0,1,0,1}(x,y) = y(1-x), \\
B_{1,0,1,1}(x,y) = x(1-y), \\
B_{1,1,1,1}(x,y) = xy.
\]

Also, \(B_{k,j,n,m}(x,y) = 0\) for \(k > n\) or \(j > m\), because \(\binom{n}{k} = 0\) or \(\binom{m}{j} = 0\). There are \(nm + n + m + 1\) \(n+m\)-th degree Bernstein polynomials (see [10,13] for details).

Some researchers have used the Bernstein polynomials of two variables in approximation theory (See [12,13]). But no result was known anything about the generating function of these polynomials. Note that for \(k, j, n, m \in \mathbb{N}_0\), we have
\[
\left(\frac{(tx)^k}{k!}\right) \left(\frac{(ty)^j}{j!}\right) e^{t(x+y)} = \frac{t^k x^k t^j y^j}{k! j!} e^{t(1-x)} e^{t(1-y)} = \frac{x^k}{k!} \frac{t^j y^j}{j!} t^m \sum_{n=0}^\infty \frac{(1-x)^n}{n!} \frac{(1-y)^m}{m!} \\
= \sum_{n=0}^\infty \sum_{m=0}^\infty B_{k,j,n,m}(x,y) \frac{t^n}{n!} \frac{t^m}{m!}
\]

From the above, we obtain the generating function for \(B_{k,j,n,m}(x,y)\) as follows:
\[
F_{k,j}(t; x, y) = \frac{(tx)^k (ty)^j}{k! j!} e^{t(1-x+y)} = \sum_{n=0}^\infty \sum_{m=0}^\infty B_{k,j,n,m}(x,y) \frac{t^n}{n!} \frac{t^m}{m!}
\]
(1.6)
where \(k, j, n, m \in \mathbb{N}_0\). We notice that,
\[
B_{k,j,n,m}(x,y) = \binom{n}{k} \binom{m}{j} x^k y^j (1-x)^{n-k} (1-y)^{m-j}, \text{ if } n \geq k \text{ and } m \geq j \\
= 0, \quad \text{ if } n < k \text{ or } m < j
\]
for \(n, k, m, j \in \mathbb{N}_0\) (for details, see [9]).

Let \(q \in (0,1)\). Then, \(q\)-integer of \(x\) by \([x]_q := \frac{1-q^x}{1-q}\)
and \([x]_{rq} := \frac{1-q^{-x}}{1-q^{-1}}\) (See [2-18] for details). Note that \(\lim_{q \to 1} [x]_q = x\). [2] motivated us to write this paper and we have extended the results given in that paper to modified \(q\)-Bernstein polynomials of two variables.

2. The Modified \(q\)-Bernstein Polynomials for Functions of Two Variables

For \(0 \leq k \leq n\) and \(0 \leq j \leq m\), the \(q\)-Bernstein polynomials of degree \(n+m\) are defined by
\[
B_{k,j,n,m}(x,y;q) = \binom{m}{j} [x]_q^k [y]_q^j [1-x]_q^{n-k} [1-y]_q^{m-j},
\]
(2.1)
\[
= \begin{cases}
\frac{t^k x^k t^j y^j}{k! j!} e^{t(1-x-q)q^{-1}(1-y)q^{1}}, & \text{if } n \geq k \text{ and } m \geq j \\
0, & \text{if } n < k \text{ or } m < j
\end{cases}
\]

For \(q \in (0,1)\), consider the \(q\)-extension of (1.6) as follows:
\[
F_{k,j}(t; x, y, q) = \frac{(q[x]_q)^k (q[y]_q)^j}{k! j!} e^{t(1-x-q)q^{-1}(1-y)q^{1}} = \frac{[x]_q^k [y]_q^j}{k! j!} \sum_{n=0}^\infty \frac{[1-x]_q^n}{n!} \sum_{m=0}^\infty \frac{[1-y]_q^m}{m!} t^{n+m}
\]
(2.2)
\[
= \sum_{n=0}^\infty \sum_{m=0}^\infty \binom{n}{k} \binom{m}{j} [x]_q^k [y]_q^j [1-x]_q^{n-k} [1-y]_q^{m-j} t^n \frac{t^m}{n! m!}
\]
where \(k, j, n, m \in \mathbb{N}_0\). Note that \(\lim_{q \to 1} F_{k,j}(t; x, y, q) = F_{k,j}(t; x, y)\).

Definition 1. The modified \(q\)-Bernstein polynomials for functions of two variables is defined by means of the following generating function:
\[
F_{k,j}(t; x, y, q) = \frac{(q[x]_q)^k (q[y]_q)^j}{k! j!} e^{t(1-x-q)q^{-1}(1-y)q^{1}}
\]
(2.3)
\[
= \sum_{n=0}^\infty \sum_{m=0}^\infty B_{k,j,n,m}(x,y;q) \frac{t^n}{n!} \frac{t^m}{m!}
\]
where \(k, j, n, m \in \mathbb{N}_0\).

By comparing the coefficients of (2.2) and (2.3), we obtain a formula for modified \(q\)-Bernstein polynomials of two variables given in the following theorem:

Theorem 1. For \(k, j, n, m \in \mathbb{N}_0\), then, we have
Theorem 2. (Recurrence Formula for $B_{k,j,n,m}(x,y; q)$) For $k, j, n, m \in \mathbb{N}$, we have

$$B_{k,j,n,m}(x,y; q) = [1-x]_q [1-y]_q B_{k,j,n-1,m-1}(x,y; q) + [1-x]_q [1-y]_q B_{k,j,n,m-1}(x,y; q) + [x]_q [1-y]_q B_{k,j-1,n,m-1}(x,y; q) + [x]_q [y]_q B_{k,j-1,n-1,m-1}(x,y; q).$$

Proof. By using the definition of Bernstein polynomials for functions of two variables defined by (2.4), we have

$$B_{k,j,n,m}(x,y; q) = \binom{n}{k} \binom{m}{j} [x]_q^k [y]_q^j [1-x]_q^{n-k} [1-y]_q^{m-j},$$

if $n \geq k$ and $m \geq j$.

If $n < k$ or $m < j$,

$$B_{k,j,n,m}(x,y; q) = \binom{n}{k} \binom{m}{j} [x]_q^{n-k} [1-x]_q^k [1-y]_q^{m-j}.$$

From Theorem 1, we have

$$B_{n,m}(f : x,y; q) = \frac{1}{m! n!} \int_{x_1}^{x_2} \cdots \int_{y_1}^{y_2} f(x,y) d^m x d^n y.$$
By using (2.7) and (2.8), we obtain
\[
\frac{n!m!}{(2\pi i)^2} \frac{\oint \left[[x]_q \xi^k \left[[y]_q \rho \right]^j \right] d\xi}{k! j!} \frac{d\rho}{\xi^{n+1} \rho^{m+1}}
= B_{k,j,n,m}(x,y;q)
\]
and
\[
\frac{n!m!}{(2\pi i)^2} \frac{\oint \left[\frac{\left[[x]_q \xi^k \left[[y]_q \rho \right]^j \right]}{k! j!} \right] e^{-[1-x]_q \xi+[1-y]_q \rho} \frac{d\xi}{\xi^{n+1} \rho^{m+1}}
= (2\pi i)^2 \left[\frac{n!}{m!} \right] \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j}.
\tag{2.9}
\]

Therefore, we see that from (2.8) and (2.10) that
\[
B_{k,j,n,m}(x,y;q)
= \left(\binom{n}{k} \binom{m}{j} \right) \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j}.
\tag{2.10}
\]

Theorem 5. (The Derivative Formula for \(B_{k,j,n,m}(x,y;q)\))

For \(k, j, n, m \in \mathbb{N}\), then, we derive the following
\[
\frac{\partial^2}{\partial x \partial y} \left(B_{k,j,n,m}(x,y;q) \right)
= n m (q+x+y) B_{k-1,j-1,n-1,m-1}(x,y;q)
- q^{-x+y+1} B_{k-1,j,n-1,m-1}(x,y;q)
- q^{-1-x+y} B_{k,j-1,n-1,m-1}(x,y;q)
+ q^{-x+y} B_{k,j,n-1,m-1}(x,y;q)) \frac{\ln^2 q}{(q-1)^2}.
\]

Proof. Using the definition of modified \(q\)- Bernstein polynomials for functions of two variables and the property (1.3), we have
\[
\frac{\partial^2}{\partial x \partial y} \left(B_{k,j,n,m}(x,y;q) \right)
= \frac{\partial^2}{\partial x \partial y} \left(B_{k,n}(x;q) B_{j,m}(y;q) \right)
= \frac{d}{dx} \left(B_{k,n}(x;q) \right) \frac{d}{dy} \left(B_{j,m}(y;q) \right)
\]
and after some calculations, the proof is complete.

Therefore, we can write the modified \(q\)- Bernstein polynomials for functions of two variables as a linear combination of polynomials of higher order as follows:

Theorem 6. For \(k, j, n, m \in \mathbb{N}_0\), we have
\[
\left(1+(1-q)\left[x \right]_{1-q} \left[1-x\right]_{1-q}\right)
+ \left(1+(1-q)\left[y \right]_{1-q} \left[1-y\right]_{1-q}\right) B_{k,j,n,m}(x,y;q)
= \left(\frac{n-k+1}{1-q} \right) \left(\frac{m-j+1}{1-q} \right) m j (1-q) B_{k,j,n,m}(x,y;q)
+ \left(\frac{n-k+1}{1-q} \right) \left(\frac{j+1}{1-q} \right) n m (1-q) B_{k,j,n,m}(x,y;q)
+ \left(\frac{k+1}{1-q} \right) \left(\frac{j+1}{1-q} \right) m j (1-q) B_{k,j,n,m}(x,y;q).
\]

Proof. It follows after expanding the series and some algebraic operations.

Theorem 7. For \(k, j, n, m \in \mathbb{N}_0\), we have
\[
B_{k,j,n,m}(x,y;q)
= \left(\frac{n-k+1}{k} \right) \left(\frac{m-j+1}{j} \right) \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j} B_{k-1,j-1,n,m}(x,y;q).
\]

Proof. To prove this theorem, we start with the right hand side:
\[
\left(\frac{n-k+1}{k} \right) \left(\frac{m-j+1}{j} \right) \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j} B_{k-1,j-1,n,m}(x,y;q).
\]

Theorem 8. For \(k, j, n, m \in \mathbb{N}_0\), we obtain
\[
B_{k,j,n,m}(x,y;q)
= \sum_{l=k+j}^{n} \left(\binom{n}{l} \binom{m}{j} \right) \left(\frac{l}{j} \right) \left(\frac{l-1}{n-j} \right) \left(\frac{l-1}{m-j} \right) \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j}.
\]

Proof. From the definition of modified \(q\)- Bernstein polynomials of two variables and binomial theorem with \(k, j, n, m \in \mathbb{N}_0\), we have
\[
B_{k,j,n,m}(x,y;q)
= \left(\binom{n}{k} \binom{m}{j} \right) \left[x^n y^m \right]_{1-q}^{-n-k} \left[y^n x^m \right]_{1-q}^{-m-j}.
\]

Theorem 9. The following identity
\[(x_q[y]_q)^k = \frac{1}{(1-x_q^n) ![1-y_q^n]^{m-l}} \left(\frac{t}{e^{l} - 1} \right)^k e^{xt}
\]

and \(B^{(k)}_n = B^{(k)}_n(0)\) are called the \(n\)-th Bernoulli numbers of order \(k\). It is well known that the second kind Stirling numbers are defined by

\[(\epsilon' - 1)^k = \sum_{n=0}^{\infty} S(n,k) \frac{n!}{n!} \tag{2.11}\]

for \(k \in \mathbb{N}\) (see [2]). By using the above relations we can give the following theorem:

Theorem 10. For \(k, j, n, m \in \mathbb{N}_0\), we have

\[B_{k, j, n, m}(x, y; q) = [x^n_q[y]_q^j] \sum_{l=0}^{n} \binom{n}{l} \left(\frac{t}{t - 1} \right)^l e^{(l-1)x_q^n + (l-1)y_q^m - l}.
\]

Proof. By using the generating function of modified \(q\)-Bernstein polynomials of two variables, we have

\[\left(t(x_q^n)_k \right)^k e^{(l-1)x_q^n + (l-1)y_q^m - l}.
\]

and after some algebraic operations, we obtain the desired result.

We see that from the theorem above, it is possible to write \([x_q^n[y]_q^j]^k\) as a linear combination of the two variables modified \(q\)-Bernstein polynomials.

For \(k \in \mathbb{N}_0\), the Bernoulli polynomials of degree \(k\) are defined by

\[B_{k, j, n, m}(x, y; q) = \sum_{n=0}^{\infty} \binom{m}{n} \frac{n!}{n!} B^{(k)}_n \left(\frac{t}{t - 1} \right)^k e^{(k-1)x_q^n + (k-1)y_q^m - k}.
\]

and after some algebraic operations, we obtain the desired result.

We see that from the theorem above, it is possible to write \([x_q^n[y]_q^j]^k\) as a linear combination of the two variables modified \(q\)-Bernstein polynomials.

For \(k \in \mathbb{N}_0\), the Bernoulli polynomials of degree \(k\) are defined by

\[B_{k, j, n, m}(x, y; q) = \sum_{n=0}^{\infty} \binom{m}{n} \frac{n!}{n!} B^{(k)}_n \left(\frac{t}{t - 1} \right)^k e^{(k-1)x_q^n + (k-1)y_q^m - k}.
\]
which is the relation of the q-Bernstein polynomials of two variables in terms of Bernoulli polynomials of order k and second Stirling numbers with shift difference operator.

Let \((Eh)(x) = h(x+1)\) be the shift operator. Then the q-difference operator is defined by

\[
\Delta_q^n = \prod_{j=0}^{n-1} (E - q^j I)
\]

(2.15)

where \(I\) is and identity operator (See [2]).

For \(f \in C[0,1]\) and \(n \in \mathbb{N}\), we have

\[
\Delta_q^n f(0) = \sum_{k=0}^{n} \binom{n}{k}_q (1-k)^n_q f(n-k),
\]

(2.16)

where \(\binom{n}{k}_q\) is called the Gaussian binomial coefficients, which are defined by

\[
\binom{n}{k}_q = \frac{[x]_q[x-1]_q \cdots [x-k+1]_q}{[k]_q!}.
\]

(2.17)

Theorem 11. For \(n, m, l, r \in \mathbb{N}_0\), we have

\[
\frac{1}{(x)_q + [1-x]_q} \left(\frac{[y]_q + [1-y]_q}{[y]_q + [1-y]_q}\right)^{m-l} \sum_{k=0}^{n} \sum_{j=0}^{r} \binom{k}{j}_q \frac{(-1)^k}{[k]_q!} \frac{1}{[j]_q!} S(l, k; q) B_{k, j, u, m}(x, y; q)
\]

\[
= \sum_{l=0}^{r} \sum_{k=0}^{m} \binom{k}{j}_q \binom{k}{j}_q \frac{(-1)^k}{[j]_q!} \frac{1}{[l]_q!} \frac{1}{[k]_q!} \Delta_q^k 0^m.
\]

Proof. Let \(F_q(t)\) be the generating function of the q-extension of the second kind Stirling numbers as follows:

\[
F_q(t) = \frac{1}{[q]_q!} \sum_{j=0}^{\infty} (-1)^j \binom{k}{j}_q \frac{[q]_q^k}{[j]_q!} e^{[q]_q^j t}
\]

\[
= \sum_{n=0}^{\infty} S(n, k; q) \frac{t^n}{n!}.
\]

From the above, we have

\[
S(n, k; q) = \frac{1}{[q]_q!} \sum_{j=0}^{\infty} (-1)^j \binom{k}{j}_q \frac{[q]_q^k}{[j]_q!} \Delta_q^k 0^m
\]

where \([k]_q! = [k]_q[k-1]_q \cdots [2]_q[1]_q\). It is easy to see that

\[
[x]_q^n = \sum_{k=0}^{n} \binom{k}{j}_q \frac{(-1)^k}{[j]_q!} \frac{1}{[k]_q!} \Delta_q^k 0^m.
\]

(2.18)

by similar way

\[
[y]_q^n = \sum_{r=0}^{\infty} \binom{r}{j}_q \frac{(-1)^r}{[j]_q!} \frac{1}{[r]_q!} \Delta_q^r 0^m.
\]

(2.19)

We have above equality. Then, we obtain the desired result in Theorem from the equations (2.18), (2.19) and Theorem 7.

3. Interpolation Function of Modified q-Bernstein Polynomial for Functions of Two Variables

For \(s \in C\), \(x \neq 1\), \(y \neq 1\), by applying the Mellin transformation to generating function of Bernstein polynomials of two variables, we get

\[
S_q(s, k, j; x, y) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{F_{k, j}(-t, q; x, y)t^{-k-j-1}}{t^s} \, dt
\]

\[
= \frac{1}{k!j!} \frac{[x]_q^k}{[y]_q^j} \frac{[y]_q^j}{[k]_q^k} \left([1-x]_q + [1-y]_q\right)^{-s}.
\]

(3.1)

By using the equation (3.1), we define the interpolation function of the polynomials \(B_{k, j; u, m}(x, y; q)\) as follows:

Definition 2. Let \(s \in C\) and \(x \neq 1\), \(y \neq 1\), we define

\[
S_q(s, k, j; x, y) = \frac{[x]_q^k}{[y]_q^j} \frac{[y]_q^j}{[k]_q^k} \left([1-x]_q + [1-y]_q\right)^{-s}.
\]

(3.2)

By using (3.2), we have

\[
S_q(s, k, j; x, y) = \frac{1}{k!j!} \frac{x}{y} \left(2-(x+y)\right)^{-s}.
\]

(3.3)

By substituting \(x = 1\) and \(y = 1\) into the above, we have \(S(s, k, j; x, y) = \infty\).

We now evaluate the \(m\) th s-derivatives of \(S(s, k, j; x, y)\) as follows:

\[
\frac{\partial^m}{\partial s^m} S(s, k, j; x, y) = \log^m \left(\frac{1}{2-(x+y)}\right) S(s, k, j; x, y)
\]

where \(x \neq 1\) and \(y \neq 1\).

References

