Polymer solar cells have many intrinsic advantages, such as their light weight, flexibility, and low material and manufacturing costs. Recently, polymer tandem solar cells have attracted significant attention due to their potential to achieve higher performance than single cells. Photovoltaic's deal with the conversion of sunlight into electrical energy. Classic photovoltaic solar cells based on inorganic semiconductors have developed considerably [1] since the first realization of a silicon solar cell in 1954 by Chapin, Fuller and Pearson in the Bell labs. [2] Today silicon is still the leading technology on the world market of photovoltaic solar cells, with power conversion efficiencies approaching 15 – 20% for mono-crystalline devices. Though the solar energy industry is heavily subsidized throughout many years, the prices of silicon solar cell based power plants or panels are still not competitive with other conventional combustion techniques – except for several niche products. An approach for lowering the manufacturing costs of solar cells is to use organic materials that can be processed under less demanding conditions. Organic photovoltaic's has been developed for more than 30 years, however, within the last decade the research field gained considerable in momentum [3,4]. The amount of solar energy lighting up Earth's land mass every year is nearly 3,000 times the total amount of annual human energy use. But to compete with energy from fossil fuels, photovoltaic devices must convert sunlight to electricity with a certain measure of efficiency. For polymer-based organic photovoltaic cells, which are far less expensive to manufacture than silicon-based solar cells, scientists have long believed that the key to high efficiencies rests in the purity of the polymer/organic cell's two domains -- acceptor and donor.
[1] | A. Goetzberger, C. Hebling, and H.-W. Schock, Photovoltaic materials, history, status and outlook, Materials Science and Engineering R 40, 1 (2003).View Article |
[2] | D.M. Chapin, C.S. Fuller, and G.L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 25, 676 (1954).View Article |
[3] | H. Spanggaard and F.C. Krebs, A brief history of the development of organic and polymeric photovoltaic's, Sol. Energy Mater. Sol. Cells 83, 125 (2004).View Article |
[4] | H. Hoppe and N.S. Sariciftci, Organic solar cells: an overview, J. Mater. Res. 19, 1924 (2004).View Article |
[5] | N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, Photo induced electron transfer from a conducting polymer to buckminsterfullerene, Science 258, 1474 (1992).View Article PubMed |
[6] | M. A. Green, K. Emery, D. L. King, Y. Hishikawa, and W. Warta, Prog. Photovoltaic's 14, 455 (2006).View Article |
[7] | G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).View Article |
[8] | S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication of bulk hetero junction plastic solar cells by screen printing, Applied Physics Letters 79 (2001), 2996.View Article |
[9] | G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Flexible light-emitting-diodes made from soluble conducting polymers, Nature 357 (1992), 477.View Article |
[10] | P. Schilinsky, C. Waldauf, C. J. Brabec, Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors, Applied Physics Letters 81 (2002), 3885.View Article |
[11] | V. Dyakonov, Electrical aspects of operation of polymer-fullerene solar cells, Thin Solid Films 451-52 (2004), 493.View Article |
[12] | I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, J. C. Hummelen, Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk- heterojunction solar cells, Advanced Functional Materials 14 (2004), 38.View Article |
[13] | J. K. J. van Duren, X. N. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Relating the morphology of poly(p-phenylene viny- lene)/methanofullerene blends to solar-cell performance, Advanced Functional Materials 14 (2004), 425.View Article |
[14] | H. Hoppe, N. Arnold, N. S. Sariciftci, D. Meissner, Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells, Solar Energy Materials and Solar Cells 80 (2003), 105.View Article |
[15] | C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, T. Fromherz, The influence of materials work function on the open circuit voltage of plastic solar cells, Thin Solid Films 403.(2002), 368.View Article |
[16] | C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters 80 (2002), 1288.View Article |
[17] | S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters 78 (2001), 841.View Article |
[18] | C. J. Brabec, Organic photovoltaics: technology and market, Solar Energy Materials and Solar Cells 83 (2004), 273.View Article |
[19] | P. Schilinsky, C.Waldauf, J. Hauch, C. J. Brabec, Simulation of light intensity dependent current characteristics of polymer solar cells, Journal of Applied Physics 95 (2004), 2816View Article |
[20] | C. Waldauff, P. Schilinsky, J. Hauch, C. J. Brabec, Material and device concepts for or- ganic photovoltaics: towards competitive efficiencies, Thin Solid Films 451-52 (2004), 503.View Article |
[21] | L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Light intensity depen- dence of open-circuit voltage of polymer:fullerene solar cells, Applied Physics Letters 86 (2005), 123509.View Article |
[22] | C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Plastic solar cells, Advanced Functional Materials 11 (2001), 15.View Article |