Open Access Peer-reviewed

High-Temperature Infrared Emitters Based on HgCdTe Grown by Molecular-Beam Epitaxy

K.D. Mynbaev1,, N.L. Bazhenov1, A.V. Shilyaev1, S.A. Dvoretsky2, N.N. Mikhailov2, M.V. Yakushev2, V.G. Remesnik2, V.S. Varavin2

1Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Journal of Optoelectronics Engineering. 2013, 1(1), 1-4. DOI: 10.12691/joe-1-1-1
Published online: August 25, 2017


Prospects of fabrication of high-temperature (up to 300K) infrared emitters based on HgCdTe alloys is discussed on the basis of the results of the study of photoluminescence of hetero-epitaxial structures. The structures were grown by molecular-beam epitaxy and emitted light with wavelength of 1.5 to 4.3µm at room temperature. It is suggested that observation of photoluminescence of the narrow-gap semiconductor at high temperatures and the specific shape of photoluminescence spectra can be explained by taking into account HgCdTe alloy disorder as is the case, for example, in structures based on III-nitrides. Requirements for technology considerations for the optically-pumped high-temperature infrared emitters based on HgCdTe are discussed.


HgCdTe, infrared emitters, photoluminescence, alloy disorder
[1]  Tonheim, C.R., Sudbø, A.S., Selvig, E., and Haakenaasen, R., “Enhancement in light emission from Hg–Cd–Te due to surface patterning,” IEEE Photonic Techn. L., 23 (1). 36-38. Jan. 2011.View Article
[2]  Tonheim, C.R., Selvig, E., Nicolas, S., Gunnæs, A.E., Breivik, M., and Haakenaasen, R., “Excitation density dependence of the photoluminescence from CdxHg1-xTe multiple quantum wells,” J. Phys.: Conf. Ser., 100 (4). 042024. Mar. 2008.View Article
[3]  Zanatta, J.P., Noël, F., Ballet, P., Hdadach, N., Million, A., Destefanis, G., Mottin, E., Kopp, C., Picard, E., and Hadji, E., “HgCdTe molecular beam epitaxy material for microcavity light emitters: application to gas detection in the 2–6 µm range,” J. Electron. Mater., 32 (7). 602-607. Jul. 2003.View Article
[4]  Rogalski, A., “Recent progress in infrared detector technologies,” Infr. Phys. Technol., 54 (1). 136-154. Jan. 2011.View Article
[5]  Lusson, A., Fuchs, F., and Marfaing, Y., “Systematic photoluminescence study of CdxHg1−xTe alloys in a wide composition range,” J. Cryst. Growth, 101 (1-4). 673-677. Apr. 1990.View Article
[6]  Herrmann, K.H., Hoerstel, W., Möllmann, K.-P., Sassenberg, U., and Tomm, J.W., “Optical and photoelectric properties of Hg0.6Cd0.4Te,” Semicond. Sci. Technol., 7 (5). 578-582. May 1992.View Article
[7]  Chu, J., and Chang, Y. “Optical properties of MCT,” in Mercury Cadmium Telluride: Growth, Properties and Applications, Ed. by Capper, P., and Garland, J.W., John Wiley & Sons, London, P. 205-238, 2011.
[8]  Mynbaev, K.D., Bazhenov, N.L., Ivanov-Omski, V.I., Mikhailov, N.N., Yakushev, M.V., Sorochkin, A.V., Dvoretsky, S.A., Varavin, V.S., and Sidorov, Yu.G., “Photoluminescence of HgCdTe-based heterostructures grown by molecular-beam epitaxy,” Semiconductors, 45 (7). 872-879. Jul. 2011.View Article
[9]  Robin, I.C., Taupin, M., Derone, R., Ballet, P., and Lusson, A., “Photoluminescence studies of HgCdTe epilayers,” J. Electron. Mater., 39 (7). 868-872. Jul. 2010.View Article
[10]  Zhang, X., Shao, J., Chen, L., Lũ, X., Guo, S., He, L., and Chu, J., “Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K,” J. Appl. Phys., 110 (4). 043503. Aug. 2011.View Article
[11]  Hadji, E., Picard, E., Roux, C., Molva, E., and Ferret, P., “3.3-µm microcavity light emitter for gas detection,” Optics. Lett., 25 (10). 725-727. May. 2000.
[12]  Laurenti, J.P., Camassel, J., Bouhemadou, A., Toulouse, B., Legros, R., and Lusson, A., “Temperature dependence of the fundamental absorption edge of mercury cadmium telluride,” J. Appl. Phys., 67 (10). 6454-6460. May 1990.View Article
[13]  Ivanov-Omskii, V.I., Mynbaev, K.D., Bazhenov, N.L., Smirnov, V.A., Mikhailov, N.N., Sidorov, G.Yu., Remesnik, V.G., Varavin, V.S., and Dvoretsky, S.A., “Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells,” Phys. Stat. Sol. (c), 7 (6). 1621-1623. Jun. 2010.View Article
[14]  Ivanov-Omskii, V.I., Bazhenov, N.L., and Mynbaev, K.D., “Effect of alloy disorder on photoluminescence in HgCdTe,” Phys. Stat. Sol. (b), 246(8). 1858-1861. Aug. 2009.View Article
[15]  Tomm, J.W., Herrmann, K.H., and Yunovich, A.E., “Infrared photoluminescence in narrow-gap semiconductors” (Review article), Phys. Stat. Sol. (a), 122(1). 11-42. Nov. 1990.View Article
[16]  Powell, R.E.L., Novikov, S.V., Luckert, F., et al., “Carrier localization and related photoluminescence in cubic AlGaN epilayers,” J. Appl. Phys., 110 (6). 063517. Sep. 2011.View Article
[17]  Stringfellow, G.B., “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth, 312 (6). 735-749. Mar. 2010.View Article
[18]  Mercaldo, L.V., Esposito, E.M., Veneri, P.D., Rezgui, B., Sibai, A., and Bremond, G., “Photoluminescence properties of partially phase separated silicon nitride films,” J. Appl. Phys., 109 (9). 093512. May 2011.View Article
[19]  Liao, Y., Kao, C., Thomidis, C., et al., “Recent progress of efficient deep UV-LEDs by plasma-assisted molecular beam epitaxy,” Phys. Stat. Sol. (c). 9 (3-4). 798-801. Mar. 2012.View Article
[20]  Shevchenko, E.A., Jmerik, V.N., Mizerov, A.M., et al., “Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies,” Semiconductors, 46 (8). 998-1002. Aug. 2012.View Article
[21]  Chen, M.-C., and, Bevan, M., “Room temperature 3-5 micrometer wavelength HgCdTe heterojunction emitter”, U.S. Patent 5, 998,809. Dec. 1999.
[22]  Elliott, C.T., “Advanced heterostructures for In1-xA1xSb and Hg1xCdxTe detectors and emitters”, Proceedings of SPIE, 2744. 452-462. 1996.View Article