A Fixed Point Result of Expanding Mappings in Complete Cone Metric Spaces

K. Prudhvi*

Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana State, India

*Corresponding author: prudhvikasani@rocketmail.com

Received April 28, 2015; Revised May 20, 2015; Accepted June 01, 2015

Abstract In this paper, we prove a fixed point theorem for expanding onto self-mappings in complete cone metric spaces. Our results improve and extend some comparable results in the literature.

Keywords: cone metric space, fixed point, expanding mapping

1. Introduction

In 2007, Huang and Zhang [5] introduced cone metric spaces replacing the real numbers by an ordered Banach space, and they have proved some fixed point theorems for self-mapping satisfying different types of contractive conditions in cone metric spaces. Later on, many authors have generalized and extended Huang and Zhang [5] fixed point theorems (see, e.g., [1,2,3,7,8]). In 1984, the concept of expanding mappings was introduced by Wang et. al. [9]. In 1992, Daffer and Kaneko [4] defined expanding mappings for pair of mappings in complete metric spaces and proved some fixed point theorems. In 2012, X. Huang, Ch. Zhu and Xi Wen [6] proved some fixed point theorems for expanding mappings cone metric spaces and they have also extended the results of Daffer and Kaneko [4]. The main aim of this paper is we proved a fixed point theorem for expanding mappings in cone metric spaces, our result extends and improves the results of [6].

The following definitions and properties are due to Huang and Zhang [5].

Definition 1.1. Let B be a real Banach space and 0 is the zero element of B, P a subset of B. The set P is called a cone if and only if:

(i) P is closed, non–empty and \(\{0\} \neq P \neq B \);

(ii) \(a, b \geq 0, x, y \in P \) implies \(ax + by \in P \);

(iii) \(P \cap (-P) = \{0\} \).

For a cone P in a Banach space B, define partial ordering \(\preceq \) with respect to P by \(x \preceq y \) if and only if \(y - x \in P \). We shall write \(x < y \) to indicate \(x \leq y \) but \(x \neq y \), while \(x \ll y \) will stand for \(y - x \in \text{Int} \, P \), where Int P denotes the interior of the set P. This cone P is called an order cone.

Let B be a Banach space and \(P \subseteq B \) be an order cone .The order cone P is called normal if there exists \(K > 0 \) such that for all \(x, y \in B \),

\[0 \leq x \leq y \implies |x| \leq K |y| \]

The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 1.2. Let \((X, d) \) be a cone metric space and \(T: X \rightarrow X \) is called an expanding mapping, if for every \(x, y \in X \) there exists a number \(k > 1 \) such that

\[d(Tx, Ty) \geq k d(x, y) \]

Definition 1.3. Let \((X, d) \) be a cone metric space .We say that \(\{x_n\} \) is

(i) a Cauchy sequence if for every \(c \in B \) with \(c > \theta \), there is \(N \) such that for all \(n, m \geq N \), \(d(x_n, x_m) \ll c \);

(ii) a convergent sequence if for any \(c > \theta \), there is an \(N \) such that for all \(n > N \), \(d(x_n, x) < c \), for some fixed \(x \in X \). We write \(x_n \rightarrow x \) (as \(n \rightarrow \infty \)).

The space \((X, d) \) is called a complete cone metric space if every Cauchy sequence is convergent [5].

Definition 1.4. [5] Let \((X, d) \) be a cone metric space and \(T: X \rightarrow X \), then T is called an expanding mapping, if for every \(x, y \in X \) there exists a number \(k > 1 \) such that

\[d(Tx, Ty) \geq k d(x, y) \]

2. Main Result

In this section, we prove a fixed point theorem for expanding mappings in complete cone metric spaces.

We prove a Lemma which is useful in the main theorem.

Lemma 2.1. Let \((X, d) \) be a cone metric space and \(\{x_n\} \) be a sequence in X. If there exists a number \(\lambda \in (0,1) \) such that

\[d(x_{n+1}, x_n) \leq \lambda d(x_n, x_{n-1}), \quad n=1,2,\ldots \quad (1) \]
then \(\{x_n\} \) is a Cauchy sequence in \(X \).

Proof. By the induction and the condition (1), we have
\[
d(x_{n+1}, x_n) \leq \lambda d(x_n, x_{n-1}) \leq \lambda^2 d(x_{n-1}, x_{n-2}) \leq \ldots \leq \lambda^n d(x_1, x_0).
\]
For \(n > m \)
\[
d(x_n, x_m) \leq d(x_n, x_{n-1}) \leq d(x_{n-1}, x_{n-2}) \leq \ldots \leq d(x_{m+1}, x_m) \leq (\lambda^{n-m} + \lambda^{n-m-1} + \ldots + \lambda^0) d(x_1, x_0).
\]
Thus, \(d(x_n, x_m) \leq \lambda^m / (1 + \lambda) d(x_1, x_0) \).

Let \(\theta < c \) be given. Choose \(r > 0 \) such that \(c + N_r(\theta) \subseteq P \), where \(N_r(\theta) = \{ x \in E : ||x|| < r \} \). Also choose a natural number \(N_1 \) such that \(\lambda^m / (1 + \lambda) d(x_1, x_0) \in N_1(\theta) \), for all \(m \geq N_1 \). Thus
\[
d(x_n, x_m) \leq \lambda^m / (1 + \lambda) d(x_1, x_0) < c, \quad \text{for all } m \geq N_1.
\]
Hence, \(\{x_n\} \) is a Cauchy sequence in \(X \).

The following theorem improved and extended the Theorem 2.1. of [6].

Theorem 2.2. Let \((X, d) \) be a complete cone metric space and \(T : X \to X \) be a surjection. Suppose that there exists \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \geq 0 \) with \(\alpha_1 + \alpha_2 + \alpha_3 + 2 \alpha_4 > 1 \) such that
\[
d(Tx, Ty) \geq \alpha_1 d(x, y) + \alpha_2 d(x, Tx) + \alpha_3 d(y, Ty) + \alpha_4 d(y, Tx)
\]
for all \(x, y \in X \), \(x \neq y \). Then \(T \) has a fixed point in \(X \).

Proof. By our assumption, it is clear that \(T \) is injective. Let \(F \) be the inverse mapping of \(T \).

Let \(x_0 \in X \), then \(x_1 = F(x_0), x_2 = F(x_1) = F^2(x_0), \ldots, x_{n+1} = F(x_n) = F^{n+1}(x_0), \ldots \)

We assume that \(x_{n+1} \neq x_n \) for all \(n = 1, 2, 3 \) otherwise \(x_{n+1} \neq x_n \), for some \(n \), \(x_0 \) is a fixed point of \(T \).

From the condition (2) it follows that
\[
d(x_{n-1}, x_n) = d(T^{-1} x_{n-1}, TT^{-1} x_n) \geq \alpha_1 d(T^{-1} x_{n-1}, T^{-1} x_n) + \alpha_2 d(T^{-1} x_{n-1}, TT^{-1} x_n) + \alpha_3 d(T^{-1} x_{n-1}, TT^{-1} x_n).
\]

By the Lemma 2.1, we get that \(\{x_n\} \) is a Cauchy sequence in \(X \). Since \((X, d) \) is complete, the sequence \(\{x_n\} \) converges to a point \(z \in X \). Let \(z = Tp, p \in X \), we have
\[
d(x, z) = d(Tx, Tz) \geq \alpha_1 d(x, z) + \alpha_2 d(x, Ty) + \alpha_3 d(y, Ty) + \alpha_4 d(y, Tx).
\]

Letting \(n \to \infty \), we get that
\[
\theta \geq \alpha_1 d(z, p) + \alpha_2 d(z, Tz) + \alpha_3 d(p, z) + \alpha_4 d(p, Tz).
\]

That is, \(\alpha_1 + \alpha_2 + \alpha_3 + 2 \alpha_4 \geq 1 \).

Therefore, \(d(p, z) = \theta \). That is, \(z = p \).

Therefore, \(p = z = Tp \).

Therefore, \(z \) is a fixed point of \(T \).

Remark 2.3. If we choose \(\alpha_4 = 0 \) in Theorem 2.1, then we get that Theorem 2.1. of [6].

Remark 2.4. If we choose \(\alpha_1 = k \) and \(\alpha_2 = \alpha_3 = \alpha_4 = 0 \) in Theorem 2.1, then we get that Corollary 2.1. of [6].

References

