The Inhibitory Effect of Betanin on Adipogenesis in 3T3-L1 Adipocytes

Jen-Yin Chen1,2,#, Chin-Chen Chu2,#, Shih-Ying Chen3, Heuy-Ling Chu4, Pin-Der Duh4,*

1Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Taiwan, ROC
2Department of Anesthesiology, Chi-Mei Medical Center, Taiwan, ROC
3Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC
4Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan, Taiwan, ROC

#These authors contributed equally to this work.
*Corresponding author: ipdduh@mail.cnu.edu.tw

Received April 05, 2019; Revised May 31, 2019; Accepted June 10, 2019

Abstract Betanin, a natural pigment that presents ubiquitously in plants, has been reported to show biological effects. However, not much is known on the effectiveness of betanin in regulating fat accumulation. Therefore, the aim of this study is to explore the inhibitory effect of betanin on adipogenesis in 3T3-L1 adipocytes and its mechanism action. The results show betanin significantly inhibited oil red O-stained material (OROSM) and triglyceride levels in 3T3-L1 adipocytes, indicating betanin inhibited lipid accumulation in 3T3-L1 adipocytes. In addition, the peroxisome proliferator–activated receptor γ (PPARγ) expression was significantly inhibited in the betanin-treated adipocytes, implying that betanin suppressed the cellular PPARγ expression in 3T3-L1 adipocytes. Moreover, the suppression of lipid accumulation by betanin occurred by decreasing the gene expression of PPARγ, CCAAT-enhancer-binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c). Taken together, these findings suggest betanin may be a mediator of adipocyte accumulation, leading to the inhibition of lipogenesis in 3T3-L1 adipocytes and betanin is therefore potentially useful for designing new antiadipogenic agent.

Keywords: adipogenesis, betanin, gene expression, lipogenesis, lipid accumulation


1. Introduction

Overweight and obesity are defined by the World Health Organization (WHO) as abnormal or excessive fat accumulation that presents a risk to health. Obesity is a global medical issue that can cause metabolic syndrome, hypertension, atherosclerosis, diabetes, cancers and sleep disorders [1]. Further, a WHO survey in 2016 indicated that over 340 million children and adolescents aged 5-19 were overweight or obese. Moreover, most of the world’s population lives in countries where overweight and obesity kills more people than underweight [2]. Consequently, emergence of metabolic syndrome incidence has led to an increased need for therapeutic and preventive strategies. Lifestyle changes such as improving eating habits and increasing physical activity, along with potential treatments that target specific molecules for regulation of metabolic pathways are recommended approaches to preventing obesity [3].

Many studies point to the health benefits of phytochemicals. Epidemiological evidence has shown inverse associations between intakes of the dietary phytochemicals present in natural sources and risk of developing chronic diseases. In recent years, therefore, many studies have focused on the biological effects of natural sources in preventing and treating overweight and obesity.

Betanin (betanin-5-O-β-glucoside) is a water soluble pigment belonging to the betalain family that presents ubiquitously in plants. Betanin is widely used as a colorant in cosmetics, food products and pharmaceuticals [4,5]. Recently, the biological activities of betanin have been reported. For example, betanin showed antioxidant [6,7], anti-inflammatory [8], anti-carcinogenic [9], antihypertensive [10], and heptoprotective [11] properties. Apart from these, in the previous studies by the authors reported that the presence of bioactive compounds such as betanin, rutin, and kaempferol in Djulis may partly account for the anti-adipogenesis of Djulis [7]. Given that betanin has shown biological effects, it is also possible that fat accumulation may be regulated by betanin. However, not much is known about the antiadipogenic effect of betanin. Therefore, the aim of this study is to evaluate the anti-adipogenesis of betanin.
2. Material and Methods

2.1. Chemicals

Betanin and Oil red O solution were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Anti-PPARγ and anti-β-actin were purchased from Cell Signaling Technology (Danvers, MA, USA). All other chemicals were reagent grade.

2.2. Cell Viability Assay and Adipocytic Differentiation

3T3-L1 cells (BCRC Number: 60159) were purchased from Bioresources collection and Research Center (BCRC, Food Industry Research and Development Institute, Hsinchu, Taiwan.). Cell viability was determined by the MTT assay [12]. 3T3-L1 preadipocytes were planted into 6 well plates and maintained in DMEM supplemented with 10 % bovine calf serum at 37°C in a humidified 5% CO₂ incubator. Adipocytic differentiation was done as described by the method of Chyau et al. [7].

2.3. Western Blot Assay

The intracellular triglyceride content was measured using a commercial triglyceride assay kit (Cayman Chemical, Ann Arbor, MI, USA). The protein concentration was determined with the Pierce TM BCA protein assay kit (Thermo Scientific, Rockford, IL, USA) using bovine serum albumin as a standard [7].

2.4. Measurement of Triglyceride Content

3T3-L1 adipocytes were harvested 8 days after the initiation of differentiation. The cells were incubated with 10-50 μM of betanin for 24 h at 37°C in a humidified 5% CO₂ incubator. Cells were collected and lysed in lysis buffer (1% Triton X-100 in PBS) for 30 min on ice box. The intracellular triglyceride content was measured using a commercial triglyceride assay kit (Cayman Chemical, Ann Arbor, MI, USA). The protein concentration was determined with the Pierce™ BCA protein assay kit (Thermo Scientific, Rockford, IL, USA) using bovine serum albumin as a standard [7].

2.5. Statistical Analysis

All data were expressed as means ± SD, and ANOVA was conducted by using the SPSS software (SPSS Inc., Chicago, IL, USA). Analysis of variance was performed by ANOVA procedures. Significant differences between means were determined by Duncan’s multiple range tests or a Dennett’s test at a level of p<0.05.
3. Results and Discussion

3.1. Effect of Betanin on Cell Growth

To understand whether betanin affects the cytotoxicity of 3T3-L1 adipocytes under the test concentrations, the cell viability of 3T3-L1 was measured using MTT assay. None of the betanin levels in the range from 10-25 μM shows any cytotoxic effect on the survival of 3T3-L1 adipocytes. (Figure 1), indicating that betanin did not affect 3T3-L1 cell growth under the tested concentrations.

Figure 1. Effect of betanin on cell proliferation in 3T3-L1 adipocytes. 3T3-L1 adipocytes were harvested 8 days after the initiation of differentiation. The cells were treated with betanin for 72 h

3.2. Effect of Betanin on Lipid Accumulation

Figure 2. Effect of betanin on oil red O-stained material (OROSM) in 3T3-L1 adipocytes. 3T3-L1 adipocytes were harvested 8 days after the initiation of differentiation and were stained with oil red O (A). The cells were treated with betanin for 72 h (B)

Next, to understand the effect of betanin on lipid accumulation in 3T3-L1 adipocytes, the cells were allowed to differentiate into adipocytes for 8 days, and then the effect of betanin on lipid accumulation was measured. Figure 2 shows the effect of betanin on adipogenesis. The microscopic images of oil red O-stained adipocytes are shown in Figure 2A, indicating that the number of lipid droplets in the differentiated cells treated with betanin decreased compared with the control. Quantitatively, the OROSOM data showed that betanin levels at 10, 25 and 50 μM reduced lipid accumulation by 19.6, 26.1 and 32.6%, respectively (Figure 2B), revealing the number of lipid droplets in the differentiated cells was significantly reduced in a concentration-dependent manner when the cells were treated with betanin. Figure 3 shows the effect of betanin on the intracellular triglyceride levels in 3T3-L1 adipocytes. Betanin levels at 10, 25 and 50 μM reduced intracellular triglyceride levels in 3T3-L1 adipocytes by 10.5, 16.6 and 18.1%, respectively, indicating the intracellular triglyceride levels in 3T3-L1 adipocytes treated with betanin were decreased compared with the control.

Figure 3. Effect of betanin on inhibition of intracellular triglyceride in 3T3-L1 adipocytes. 3T3-L1 adipocytes were harvested 8 days after the initiation of differentiation. The cells were treated with betanin for 72 h

3.3. Betanin Reduced Lipid Accumulation by Regulating Adipogenic Genes

Figure 4. Effect of betanin on PPARγ expression in 3T3-L1 adipocytes. 3T3-L1 adipocytes were harvested 8 days after the initiation of differentiation. The cells were treated with betanin for 24 h
PPARγ, a transcription factor, plays an important role in the induction and maintenance of differentiated adipocyte phenotype [15]. Therefore, to understand whether betanin reduces lipid accumulation through regulating PPARγ, the PPARγ protein expression was determined using western blot analysis. As shown in Figure 4, in the betanin-treated adipocytes, the PPARγ protein expression was decreased in a concentration-dependent manner. In addition, the effect of betanin on the expression of adipogenic genes was determined by quantitation PCR analysis (Figure 5). As expected, in the betanin-treated adipocytes at different concentrations, PPARγ (Figure 5A), C/EBPα (Figure 5B) and SREBP-1c (Figure 5C) mRNA levels were significantly down-regulated. In addition, a decline in protein levels of PPARγ was observed due to the direct relationship between mRNA and protein levels (Figure 4). PPARγ is a potent inducer of adipogenesis, which can promote the transdifferentiation of myoblasts to adipocytes, particularly when coexpressed with C/EBPα [7,16,17]. In addition, C/EBPα is a key transcriptional factor in adipogenesis and its expression is activated by C/EBPβ, C/EBPδ and PPARγ in adipocytes [18]. This means PPARγ and C/EBPα emerge as master regulators of adipogenesis [19]. Furthermore, SREBP-1c, a key lipogenic transcription factor, directly activates the expression of more than 30 genes; SREBP-1c is dedicated to fatty acid biosynthesis and uptake of fatty acids, cholesterol and triglycerides [7,20,21]. Clearly, betanin suppressed the expression of adipogenic genes in the betanin-treated adipocytes; therefore, betanin was able to regulate the expression of adipogenic genes, such as PPARγ, C/EBPα and SREBP-1c, thereby inhibiting lipid accumulation in 3T3-L1 cells.

4. Conclusion

According to the results presented in this study, betanin inhibited lipid accumulation. The mechanism action may be attributed to down regulation of the gene expression of PPARγ, C/EBPα and SREBP-1c, leading to inhibition of adipose tissue formation. These findings offer new insight into prevention of adipogenesis. Supplementation with betanin could be a beneficial treatment to reduce adipogenesis. In addition, despite the mentioned benefits, betanin suffers from limited oral bioavailability (below 1%) due to incomplete oral absorption and low shelf life [4]. Therefore, scientific trials in vivo are needed to confirm the results.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

This research work was supported by research grants from Chi Mei Medical Center (CMFHR10713).

References

formosanum) and its bioactive compounds, in vitro and in vivo," 
*Food Bioscience*, (in submission) 2019.


© The Author(s) 2019. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).