Determination of Antioxidant Activity in Garlic (*Allium sativum*) Extracts Subjected to Boiling Process *in vitro*

Cunbao Liu, Xu Yang, Yufeng Yao, Weiwei Huang, Wenjia Sun, Yanbing Ma*

Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China

*Corresponding author: yanbingma@126.com

Received June 16, 2014; Revised July 12, 2014; Accepted July 16, 2014

Abstract Garlic is a vegetable known to be a good antioxidant food resource around the world. Several studies on the antioxidant activity of garlic, mainly conducted using one or two methods, have been reported. However, comparison of the antioxidant activity of garlic before and after cooking is rarely reported. In this study, we compared the antioxidant activity of garlic aqueous and methanol extracts processed before and after boiling to mimic the cooking process. By testing the antioxidant activities of the extracts in different chemical mimic systems *in vitro*, namely, ABTS [2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)] and DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging activities, reducing power, and metal chelating ability, we found the following data: (1) no significant difference was observed on the ABTS radical scavenging activities of garlic aqueous and methanol extracts before and after boiling process; (2) the reducing power of garlic aqueous and methanol extracts decreased by 25.9% and 14.1%, respectively, whereas the metal chelating activity of boiled garlic aqueous extracts increased by 54.7%; and (3) DPPH radical scavenging test may not be suitable to examine the garlic extracts. In addition, the ABTS radical scavenging activities of garlic extracts were very stable at pH ranges similar in human bodies, and both sulfhydryl and phenolic compounds were probably responsible for the antioxidant ability of garlic. The boiling process destroyed only a small part of garlic bio-ingredients related to antioxidant activity properties.

Keywords: aqueous, methanol extract, radical scavenge, reducing power, metal chelating

1. Introduction

Reactive oxygen species (ROS) in human bodies include peroxyl radical, superoxide anion radical (O$_2^-$), hydrogen peroxide, hydroxyl radical, hypochlorous acid, singlet oxygen, and nitric oxide radical [1]. Formation of ROS, such as O$_2^-$ and hydroxyl, is an unavoidable consequence of aerobic metabolism during respiration. Evidence suggests that mitochondria converts 1% to 2% of the oxygen consumed in O$_2$ under normal physiological conditions and turns them into a series of very destructive ROS, such as hydroxyl [2]. Another endogenous resource of ROS is inflammatory reaction, such as release of ROS by polymorpho-nuclear leukocytes and macrophage peroxisomes. Exogenous sources of ROS include smoke, air pollution, and pesticides [3,4]. ROS has important roles in the body, including its involvement in the signal transduction of inflammation to resist pathogen infection [5]. However, overproduction of ROS may easily cause damage to cells or tissues by lipid peroxidation and denaturation of proteins or nucleic acid. This damage has severe consequences on overall metabolism [6], which may then cause series of clinical symptoms, such as arteriosclerosis, arthritis, obesity, heart disease, and cancer. Radical damage theory of aging is one of the most acceptable theories in the world [4,7,8].

In the long history of evolution, surviving organisms have developed considerable strategies to eliminate these dangerous radicals, which could be summarized into two systems. One group includes gene-coded antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase, thioredoxin systems, and glutathione systems; another group includes non-gene coded metabolic products, such as uric acid, ascorbic acid, α-tocopherol, carotenes, glutathione, lipoic acid, and ubiquinol [9,10,11,12].

As an important part of food, vegetables not only provide carbohydrates and minerals but also supply antioxidants, such as vitamins, carotenoids, and polyphenols. Garlic is a vegetable known to be a good antioxidant food resource worldwide. Considerable studies on the antioxidant activity of garlic, mainly conducted using one or two methods, have been reported. However, comparison of the antioxidant activity of garlic before and after cooking is rarely reported. To investigate the effects of cooking on the antioxidant activity of garlic, we extracted garlic by using water and methanol. Garlic aqueous and methanolic extracts were prepared, subjected to boiling to mimic the cooking procedure, and examined for their antioxidant activity by different assays *in vitro.*
2. Materials and Methods

2.1. Garlic Samples and Extracts Preparation

Fresh garlic was cleaned by distilled water, and 1 g of edible parts was cut and completely ground with 5 mL of distilled water or methanol (Xilonghuagong Co., Ltd., Chengdu, China). Samples were centrifuged at 13 500 g for 10 min. Subsequently, 4 mL of supernatants were collected and separated into two equal parts, one of which is boiled for 30 min and centrifuged at 13 500 g for 10 min. The supernatants were collected for antioxidant tests.

2.2. ABTS Radical Scavenging Test

ABTS (Amresco) radicals were obtained based on the report made by Mathew [13]. ABTS radical solutions were diluted to make the absorbance at 734 nm to be 0.8 ± 0.030. Approximately 2 µL of samples was added into 48 µL of solution, and absorbance at 734 nm was detected by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience). ABTS radical scavenging percentage was calculated as follows: Inhibition (I) % = [(AB − AA)/AB] × 100, where AA stands for absorbance at 734 nm after sample incubation, and AB stands for absorbance at 734 nm before sample addition. Afterward, 1.2 mM of α-tocopherol (sigma) and 1.2 mM of butylated hydroxytoluene (BHT, Alfa Aesar, China) were used as positive controls. α-Tocopherol and BHT have similar reductive potential. The absorbance spectrum was read at 0 s, 2 s, 30 s, 2 min, 5 min, 10 min, and 20 min. Finally, end point scanning of the reaction products was immediately accomplished after adding NaN₃ (Sigma-aldrich) to a final concentration of 0.2 M. The absorbance was vigorously shaken, diluted with 230 µL of water, and left standing at room temperature for 10 min. Absorbance of the solution was then measured at 562 nm by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience). The percentage of inhibition of ferrozone-Fe²⁺ complex formation was calculated using the following formula. I% = [(A0 − A1)/A0] × 100, where A0 is the absorbance of the control, and A1 is the absorbance in the presence of the samples. Moreover, 1.2 mM of EDTA was used as control.

2.2.1. ABTS Radical Scavenging Test

The same volume of water and IAA were used as controls. The absorbance spectrum test for phenols

DPPH radical were determined by ε415 = 3.6 × 10³ M⁻¹cm⁻¹ [17]. Reaction rates during the first minute were obtained by analyzing the absorbance values detected by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience) using the software Swift II Reaction Kinetics.

2.7. Alkylation of Thiol Groups

All the buffers used in this study are analytical grade products from Tianjin Fengchuan Chemical Reagent Technologies Co., Ltd., Tianjin, China. pH studies were conducted by dissolving sample into 20 mM of sodium acetate, pH 5.0; 20 mM of sodium phosphate, pH 6.0, 7.0, or 8.0; or 20 mM of glycine-OH, pH 9.0. The exact concentrations of ABTS radical were determined by ε415 = 3.6 × 10³ M⁻¹cm⁻¹ [17]. Reaction rates during the first minute were obtained by analyzing the absorbance values detected by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience) using the software Swift II Reaction Kinetics.

2.5. Chelating Effects on Ferrous Ions

All the chemicals and buffers used in this study are analytical grade products from Tianjin Fengchuan Chemical Reagent Technologies Co., Ltd., Tianjin, China. The chelating effects on metals were determined based on the method of Denis et al. with slight modifications [16]. Briefly, 20 µL of the samples or solvents of the same volume was added to a solution of 2 mM of FeCl₂ (10 µL). The reaction was initiated by the addition of 5 mM of ferrozine (40 µL). The mixture was vigorously shaken, diluted with 230 µL of water, and left standing at room temperature for 10 min. Absorbance of the solution was then measured at 562 nm by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience). The percentage of inhibition of ferrozine-Fe²⁺ complex formation was calculated using the following formula. I% = [(A0 − A1)/A0] × 100, where A0 is the absorbance of the control, and A1 is the absorbance in the presence of the samples. Moreover, 1.2 mM of EDTA was used as control.

2.2. pH Effects on ABTS Radical Scavenge

All the buffers used in this study are analytical grade products from Tianjin Fengchuan Chemical Reagent Technologies Co., Ltd., Tianjin, China. pH studies were conducted by dissolving sample into 20 mM of sodium acetate, pH 5.0; 20 mM of sodium phosphate, pH 6.0, 7.0, or 8.0; or 20 mM of glycine-OH, pH 9.0. The exact concentrations of ABTS radical were determined by ε415 = 3.6 × 10³ M⁻¹cm⁻¹ [17]. Reaction rates during the first minute were obtained by analyzing the absorbance values detected by Ultrospec 2100 pro UV/Visible Spectrophotometer (Amersham Bioscience) using the software Swift II Reaction Kinetics.

2.8. Absorbance Spectrum Test for Phenols

All the buffers used in this study are analytical grade products from Tianjin Fengchuan Chemical Reagent Technologies Co., Ltd., Tianjin, China. Thiol groups were alkylated by incubating sample with 22 mM of indooacetamide (IAA, sigma) in phosphate-buffered saline (10 mM of sodium phosphate, pH 7.4, 120 mM of NaCl, and 3 mM of KCl) for 1 h in darkness at room temperature. The same volume of water and IAA were used as controls. Initial rates were calculated as described in pH effects on ABTS radical scavenger.

2.9. Statistical Analysis

Data were expressed as means ± SD of three replicates and then analyzed by SPSS V13. One-way analysis of
variance and Duncan’s new multiple-range test were used to determine the differences among the means. P values < 0.05 were regarded as significant.

3. Results and Discussion

3.1. ABTS Radical Scavenging Activity

Data in Figure 1 demonstrated that no significant difference was observed on the ABTS radical scavenging activities of garlic aqueous and methanolic extracts before and after boiling (p > 0.05). These results also showed that the ABTS radical scavenging test is very stable in different types of solvents. We then took this method to test pH effects on the antioxidant activity of garlic and ingredients that are responsible for its antioxidant activity.

We adopted the 100% methanol system in DPPH radical scavenging test and found that BHT and α-tocopherol have effects on DPPH radical scavenging, but garlic extracts resulted in a negative result via the calculation formula (Figure 2). As a powerful alkaline food, garlic may vigorously change the pH of the reaction system, which may then cause unexpected results in the system. Purple color precipitates after addition of garlic extracts into the system. These precipitations may block the optical path and cause negative DPPH radical scavenging results calculated by the formula.

3.3. Reducing Power

Data from Figure 3 indicated that the reducing power of both garlic aqueous and methanol extracts declined with p < 0.05 after boiling. The results showed that the boiling procedure, despite of the water solvents or organic solvents, could destroy the reducing power of garlic extracts. Although the statistical analysis value is significant, the reducing power of garlic aqueous and methanol extracts are reserved as 74.1% and 85.9%, respectively.

3.4. Chelating Effects on Ferrous Ions

Data from Figure 4 indicated that α-tocopherol and BHT showed no ferrous ion chelating activities despite of
their powerful ABTS and DPPH radical scavenging activities. Garlic methanol extracts showed excellent metal chelating activity, which is about 71.5% of that of 1.2 mM EDTA. Notably, ferrous ion chelating activities of garlic aqueous extracts increased about 54.7% after boiling procedure. This result may be contributed to the complexes formed during the boiling process.

3.5. pH effects on ABTS Radical Scavenging Activity

Data from Figure 5 showed that garlic aqueous extracts demonstrated a powerful ABTS radical scavenging activity compared with α-tocopherol and BHT under pH = 7 solvents. Although the result is not the most powerful ABTS radical scavenger under all of the pH environments tested, garlic aqueous extracts showed faster radical scavenging rate under pH 6 to 8, which is the most widespread pH conditions of the human bodies except for several special organs, such as the stomach. These results showed that garlic not only has powerful antioxidant ability in vitro but also has important radical scavenger roles in the body.

3.6. Sulphydryl Compounds Responsible for ABTS Radical Scavenging Activity

Data in Figure 6 presented that only garlic aqueous extracts showed a decline on ABTS radical scavenging activity after IAA inhibition ($p < 0.05$). IAAs have no effects on the radical scavenging activity of α-tocopherol and BHT. These results showed that sulphydryl compounds containing thiol groups in garlic, maybe diallyl trisulfide, are responsible for part of the ABTS radical scavenging activity of garlic [23].

3.7. Phenolic Compounds Responsible for ABTS Radical Scavenging Activity

Data in Figure 7 presented that only garlic aqueous extracts showed a decline on ABTS radical scavenging activity after IAA inhibition ($p < 0.05$). IAAs have no effects on the radical scavenging activity of α-tocopherol and BHT. These results showed that sulphydryl compounds containing thiol groups in garlic, maybe diallyl trisulfide, are responsible for part of the ABTS radical scavenging activity of garlic [23].
During the ABTS radical scavenging process, radicals with a specified absorbance at 415 nm are turned into ABTS molecules with a specified absorbance at 340 nm. α-Tocopherol and BHT have faster radical scavenging rates in the initial 30 s, whereas garlic aqueous extracts similarly nearly cleaned all of the radicals after 2 min (Figure 7). Notably, no specified compounds were detected at the corrected absorbance at 550 nm in ABTS radical scavenging process by α-tocopherol and BHT. However, specified compounds were detected after the end point scan of garlic aqueous extracts. Phenolic compounds are reported to form purple products with ABTS molecules after their scavenging of ABTS radicals [24]. Formation of compounds that have specified absorbance at 340 nm. Notably, no specified compounds were detected after the corrected absorbance at 550 nm in ABTS radical scavenging process by α-tocopherol and BHT. However, specified compounds were detected at the corrected absorbance at 550 nm in ABTS radical scavenging process by α-tocopherol and BHT.

4. Conclusion

In this study, we compared the antioxidant activity of garlic aqueous and methanol extracts processed before and after boiling to mimic the cooking procedure. No significant difference was observed on the ABTS radical scavenging activities of garlic aqueous and methanol extracts before and after boiling. The reducing power of boiled garlic aqueous and methanol extracts decreased by 25.9% and 14.1%, whereas the metal chelating activity of garlic extracts was very stable at pH ranges similar in human bodies, and both sulphhydryl and phenolic compounds were probably responsible for the antioxidant ability of garlic. The boiling process destroyed only a small part of garlic antioxidant activity.

Statement of Competing Interests

The authors have no competing interests.

References

