
Journal of Computer Sciences and Applications, 2014, Vol. 2, No. 1, 6-8
Available online at http://pubs.sciepub.com/jcsa/2/1/2
© Science and Education Publishing
DOI:10.12691/jcsa-2-1-2

Implementation of Parallel Fast Hartley Transform
(FHT) Using Cuda

Hovhannes Bantikyan*

Department of Computer Systems and Informatics, State Engineering University of Armenia, Yerevan, Armenia
*Corresponding author: bantikyan@gmail.com

Received February 15, 2014; Revised March 10, 2014; Accepted March 11, 2014

Abstract Implementation of Fast Hartley Transform in parallel manner on Graphics Processing Unit, using
CUDA technology is presented in this paper. Calculating FHT in parallel, using multiple threads, gives us huge
improvement in calculation speed. Developed CUDA based parallel algorithm, which experimental results compared
with results of CPU based sequential algorithm. Edge detection algorithms can be speed up for large images,
performing in frequency domain. Here experiments are done on various edge detection filters and different image
sizes, using fast Hartlay transform.

Keywords: Fast Hartley Transformation, parallel computing, GPGPU, CUDA programming

Cite This Article: Hovhannes Bantikyan, “Implementation of Parallel Fast Hartley Transform (FHT) Using
Cuda.” Journal of Computer Sciences and Applications, vol. 2, no. 1 (2014): 6-8. doi: 10.12691/jcsa-2-1-2.

1. Introduction
Discrete transforms have a significant role in digital

signal processing. They are used for many applications,
such as image filtering, image reconstruction and image
analysis. In this case Fourier Transform is the most widely
used transformation. DFT converts the sampled function
from its original domain (often time or position along a
line) to the frequency domain. The input samples are
complex numbers, and the output coefficients are complex
as well.

A Discrete Hartley Transform (DHT) is a Fourier-
related transform of discrete, periodic data similar to the
Discrete Fourier Transform (DFT), with analogous
applications in signal processing and related fields. Its
main distinction from the DFT is that it transforms real
inputs to real outputs, with no intrinsic involvement of
complex numbers. In some applications it is more
reasonable to use DHT when considering some of the
advantages over DFT. So, DHT is a real-valued transform,
it possesses the same formula for forward and inverse
transform, it has a computational equivalence to DFT.
Like FFT, Hartley Transform has a Fast algorithm too,
which computes the DHT of length 2= tN in

2(log ())O N N [1].
The time needed for calculation can be reduced

calculating FHT in parallel manner on GPU. GPU can
process large volume data in parallel when working in
single instruction multiple data (SIMD) mode. In
November 2006, the Compute Unified Device
Architecture (CUDA) which is specialized for compute
intensive highly parallel computation is unveiled by
NVIDIA.

Edge detection is an important task in image processing.
It is a main tool in pattern recognition, image
segmentation, and scene analysis. An edge detector is
basically a high-pass filter that can be applied to extract
the edge points in an image. In this paper, we will show
classical time-domain edge detection filters and their
frequency-domain analogues. We will show that using our
GPU based FHT algorithm can gain in performance in
edge detection process.

2. Fast Hartley Transform and Its
Parallel Implementation with CUDA

The Hartley transform (HT) is defined like the Fourier
transform with “cos+sin” instead of “cos+i•sin”. The
(discrete) Hartley transform of x length-N sequence x is
defined as

1

0

2 2() () cos cos() sin sin()
−

=

 = +
∑
N

t

π πH f X t ft ft
N N

 (1)

The Hartley transform of a purely real sequence is
purely real:

 fo[r] ∈ ∈H x R x R (2)

The inverse transformation, which allows one to
recover the X(t) from the H(f), is simply the DHT of H(f)
multiplied by 1/N. Thus, the DHT is its own inverse, up to
an overall scale factor.

In computing the DHT of a finite length signal with
length N, gives us a time-complexity of O(N2). This
means that for larger values of N, the computational time
increases exponentially, which is not desirable. To make
the DHT operation more practical, several FHT algorithms
were proposed. Now let’s get down to business and see

 Journal of Computer Sciences and Applications 7

how the Hartley transform can be implemented efficiently
as the FHT. The development is similar to that of the FFT.
The heart of the algorithm is a computation whose data-
flow diagram looks like a butterfly.

From now on we will be assuming that N is a power of
two. Since N is even, the time sequence, X(t), which
appears in the definition of the Hartley transform
(Equation 1), can be divided into two intertwined
sequences, X0 and X1, given by:

()
()

0

1

(2)

(2 1)

=

= +

X t X t

X t X t

That is, sequence X0 consists of the even-indexed
values from sequence X and sequence X1 consists of the
odd-indexed values. We will consider all indices to be
interpreted modulo-N. But since X0 and X1 are defined in
terms of 2t, they actually repeat modulo N/2. So consider
X0 and X1 as sequences of length N/2 and let H0 and H1 be
their Hartley transforms. Let M stand for N/2. Then, by
the definition of the Hartley transform in Equation 1 we
have:

1

0 0
0
1

1 1
0

2 2() () cos cos() sin sin()

2 2() () cos cos() sin sin()

−

=
−

=

 = +

 = +

∑

∑

M

t
M

t

π πH f X t ft ft
M M

π πH f X t ft ft
M M

 (3)

Using only the trig identities:

() () ()

() () ()

() () ()

sin sin sin()
sin sin cos cos

2
cos cos cos()

sin sin sin sin
2

cos cos cos()
cos cos cos cos

2

+ + −
=

− − +
=

− + +
=

A B A B
A B

A B A B
A B

A B A B
A B

 (4)

we can verify that

 ()
() ()0 1

1

2cos
1
2 2()sin

 + =
 + −

πfH f H f
N

H f
πfH N f
N

 (5)

Keeping in mind that the Hartley transforms on the
right side of Equation 5 repeat modulo N/2, we can
recognize the following symmetry:

() ()0 1

1

2cos
1

2 2 2()sin

 − + =
 − −

πfH f H f
NNH f

πfH N f
N

 (6)

Figure 1. The results of recursion Equations 5 and 6 are combined in this
data-flow diagram. Blue represents terms with a cosine factor. Red
represents terms with a sine factor. Black represents terms with no trig
factor

Equations 5 and 6 taken together define the complete
FHT butterfly computation, as diagrammed in Figure 1 [2].

One approach that we will discuss in this paper is
Radix-2 FHT algorithm. In this case we assume that N is
power of 2 (N=2v). The entire process is divided into
log2N stages and in each stage N/2 two-point DHTs are
performed. The computation involving each pair of data is
called a butterfly. Radix-2 algorithm can be implemented
as Decimation-in-time or Decimation-in-frequency
algorithms. We will discuss Radix-2 DIT approach. As we
want to implement algorithm without any recursions, we
first need to compute bit-reversal permutation for N length
signal. It will be done on host, that’s why for initial signal
we will consider permuted signal, for example for N=8
length x{0, 1, 2, 3, 4, 5, 6, 7}, we will have x{0, 4, 2, 6, 1,
5, 3, 7}.

Figure 2. Parallel composition for 8-point Radix-2 FHT in Decimation
in time form.

For Radix-2 FHT algorithm we have log2N stages for N
length signal (for above example N=8 we have 3 stages).
All butterflies in a stage can be performed in parallel and
then at the end of the stage, the results can be gathered.
Now all nodes can perform computation on the result of
the first stage in parallel and output of the second stage
can be gathered again and so on. Let us consider the
decimation- in- time form of the length 8 Radix-2
algorithm. In the first stage, we have to perform eight
separate 2-point DHTs. In the second stage, it visibly
breaks into two separate 4-point DHTs and in the third
stage, we have a single 8-point DHT. Figure 2 shows the
parallel composition of this algorithm.

Texts in the ovals are the elements on which
computation is performed and the numbers below the
ovals are the threads that would perform the computation.
Solid lines indicate communication. After every stage we
call __syncthreads() of CUDA for the next Stage to be
able to continue computing. In the decimation-in-
frequency form, the arrows in the above figure need to be
reversed and the stages should be numbered from bottom-
up. So, this is just the inverse of decimation-in-time form.
But the advantage of decimation-in-time form is that the
result is already in the master node by the end of the last
stage whereas in the case of decimation-in-frequency form,
we need a result gathering phase after the last FHT stage.

3. Experimental Results
Experiments done on
1. CPU: Intel(R) Core(TM) i3-2100 3,10GHz.
2. GPU: GeForce GT 630, Max threads per block: 1024,

Max blocks in kernel lunch: 65,535.
To do experiments and evaluate performance of GPU

based FHT algorithm we choose one of FTH applications
– edge detection. For edge detection process we took some

8 Journal of Computer Sciences and Applications

well known filters. Here are edge detection filters we use
for our experiments:

1. (average) Averaging filter.
2. (disk) Circular averaging filter (pillbox).
3. (gaussian) Gaussian lowpass filter.
4. (laplacian) Approximates the two-dimensional

Laplacian operator.
5. (log) Laplacian of Gaussian filter.
6. (motion) Approximates the linear motion of a camera.
7. (prewitt) Prewitt horizontal edge-emphasizing filter.
8. (sobel) Sobel horizontal edge-emphasizing filter.
First we run filters in time domain, than in frequency –

Hartley transformed domain. To filter images in frequency
domain we do following steps:

1. calculate FHT of image.
2. pad filter matrix with zeros to fit image sizes.
3. calculate FHT of padded filter matrix.
4. multiply results of 1 and 3.
5. calculate inverse FHT of result 4.
To compare time domain and frequency domain

filtering results, we run this procedure also on the image
with noise. For that reason we add Gaussian white noise to
the original image. So for experiments we will choose
Lena image and the noisy version of it (Figure 3).

Figure 3. (a) Original Lena image, (b) Lena image with Gaussian white
noise

Figure 4 shows FHT based filtering results for above
mentioned filters. First line is filtering results of original
image, second line for image with noise.

Figure 4. FHT based filtering results for different filters.

In Table 1 are presented PSNRs of filtered images
(original and noisy) for time domain and frequency
domain.

Table 1. PSNRs of filtered images (original and noisy)
PSNR log motion prewitt sobel

time domain 19.9086 24.3645 23.8381 24.3686
with FHT 20.3227 27.1514 26.6253 26.4508
To evaluate performance we done experiments on

images of different sizes (Figure 5). Here we will compare
sequential FHT (on CPU) and parallel FHT (on GPU)
algorithms. Figure 5 shows chart of edge detection sobel
filter calculation time for classical filtering in time domain,
using FHT on CPU and FHT on GPU.

0
0.5

1
1.5

2

Ti
m

e
in

 m
ili

se
co

nd
s

Signal length

(a)

(b)

(c)

Figure 5. Sobel filter (a) in time domain (b) using FHT CPU, (c) using
FHT GPU

As we can see GPU based calculation give as huge gain
in performance for large images.

4. Conclusion
As we can see, we gain in performance using parallel

GPU algorithm. Parallelizing the sequential and simple
FHT algorithms will be beneficial to control code
complexity and minimize execution time of the process.

Acknowledgement
I would like to thank Hakob Sarukhanyan for useful

and pragmatic suggestions.

References
[1] Bracewell R. N., The Hartley Transform, Oxford, Oxford Univ.

Press, 1986, 168 pages.
[2] Scott R., Doing Hartley smartly, EE Times-India, 2000.
[3] Millane R. R., Analytic Properties of Hartley Transform and their

Implications, IEEE, 1994.
[4] Henning K., Maurico D., and Jurgen F., The Hartley transform in

seismic imaging, GEOPHYSICS VOL. 66, NO. 4 (JULY-
AUGUST 2001), Pages. 1251-1257.

[5] Somasundaram M. Implementation and performance evaluation of
parallel FFT algorithms.

[6] B. Jähne., Digital Image Processing. 2005.
[7] J. Sanders, E. Kandrot., CUDA by Example. 2010.
[8] NVIDIA CUDA C Programming Guide. NVIDIA Corp. 2012.
[9] H. Lensch, R. Strzodka., Massively Parallel Computing with Cuda.

2010.

