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Abstract  Implementation of Fast Hartley Transform in parallel manner on Graphics Processing Unit, using 
CUDA technology is presented in this paper. Calculating FHT in parallel, using multiple threads, gives us huge 
improvement in calculation speed. Developed CUDA based parallel algorithm, which experimental results compared 
with results of CPU based sequential algorithm. Edge detection algorithms can be speed up for large images, 
performing in frequency domain. Here experiments are done on various edge detection filters and different image 
sizes, using fast Hartlay transform. 
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1. Introduction 
Discrete transforms have a significant role in digital 

signal processing. They are used for many applications, 
such as image filtering, image reconstruction and image 
analysis. In this case Fourier Transform is the most widely 
used transformation. DFT converts the sampled function 
from its original domain (often time or position along a 
line) to the frequency domain. The input samples are 
complex numbers, and the output coefficients are complex 
as well. 

A Discrete Hartley Transform (DHT) is a Fourier-
related transform of discrete, periodic data similar to the 
Discrete Fourier Transform (DFT), with analogous 
applications in signal processing and related fields. Its 
main distinction from the DFT is that it transforms real 
inputs to real outputs, with no intrinsic involvement of 
complex numbers. In some applications it is more 
reasonable to use DHT when considering some of the 
advantages over DFT. So, DHT is a real-valued transform, 
it possesses the same formula for forward and inverse 
transform, it has a computational equivalence to DFT. 
Like FFT, Hartley Transform has a Fast algorithm too, 
which computes the DHT of length  2= tN  in 

2( log ( ))O N N [1]. 
The time needed for calculation can be reduced 

calculating FHT in parallel manner on GPU. GPU can 
process large volume data in parallel when working in 
single instruction multiple data (SIMD) mode. In 
November 2006, the Compute Unified Device 
Architecture (CUDA) which is specialized for compute 
intensive highly parallel computation is unveiled by 
NVIDIA. 

Edge detection is an important task in image processing. 
It is a main tool in pattern recognition, image 
segmentation, and scene analysis. An edge detector is 
basically a high-pass filter that can be applied to extract 
the edge points in an image. In this paper, we will show 
classical time-domain edge detection filters and their 
frequency-domain analogues. We will show that using our 
GPU based FHT algorithm can gain in performance in 
edge detection process.  

2. Fast Hartley Transform and Its 
Parallel Implementation with CUDA 

The Hartley transform (HT) is defined like the Fourier 
transform with “cos+sin” instead of “cos+i•sin”. The 
(discrete) Hartley transform of x length-N sequence x is 
defined as  
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The Hartley transform of a purely real sequence is 
purely real: 

  fo[ r]  ∈ ∈H x R x R  (2) 

The inverse transformation, which allows one to 
recover the X(t) from the H(f), is simply the DHT of H(f) 
multiplied by 1/N. Thus, the DHT is its own inverse, up to 
an overall scale factor. 

In computing the DHT of a finite length signal with 
length N, gives us a time-complexity of O(N2). This 
means that for larger values of N, the computational time 
increases exponentially, which is not desirable. To make 
the DHT operation more practical, several FHT algorithms 
were proposed. Now let’s get down to business and see 
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how the Hartley transform can be implemented efficiently 
as the FHT. The development is similar to that of the FFT. 
The heart of the algorithm is a computation whose data-
flow diagram looks like a butterfly. 

From now on we will be assuming that N is a power of 
two. Since N is even, the time sequence, X(t), which 
appears in the definition of the Hartley transform 
(Equation 1), can be divided into two intertwined 
sequences, X0 and X1, given by: 
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That is, sequence X0 consists of the even-indexed 
values from sequence X and sequence X1 consists of the 
odd-indexed values. We will consider all indices to be 
interpreted modulo-N. But since X0 and X1 are defined in 
terms of 2t, they actually repeat modulo N/2. So consider 
X0 and X1 as sequences of length N/2 and let H0 and H1 be 
their Hartley transforms. Let M stand for N/2. Then, by 
the definition of the Hartley transform in Equation 1 we 
have: 
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Using only the trig identities: 
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we can verify that 
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Keeping in mind that the Hartley transforms on the 
right side of Equation 5 repeat modulo N/2, we can 
recognize the following symmetry: 
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Figure 1. The results of recursion Equations 5 and 6 are combined in this 
data-flow diagram. Blue represents terms with a cosine factor. Red 
represents terms with a sine factor. Black represents terms with no trig 
factor 

Equations 5 and 6 taken together define the complete 
FHT butterfly computation, as diagrammed in Figure 1 [2]. 

One approach that we will discuss in this paper is 
Radix-2 FHT algorithm. In this case we assume that N is 
power of 2 (N=2v). The entire process is divided into 
log2N stages and in each stage N/2 two-point DHTs are 
performed. The computation involving each pair of data is 
called a butterfly. Radix-2 algorithm can be implemented 
as Decimation-in-time or Decimation-in-frequency 
algorithms. We will discuss Radix-2 DIT approach. As we 
want to implement algorithm without any recursions, we 
first need to compute bit-reversal permutation for N length 
signal. It will be done on host, that’s why for initial signal 
we will consider permuted signal, for example for N=8 
length x{0, 1, 2, 3, 4, 5, 6, 7}, we will have x{0, 4, 2, 6, 1, 
5, 3, 7}. 

 

Figure 2. Parallel composition for 8-point Radix-2 FHT in Decimation 
in time form. 

For Radix-2 FHT algorithm we have log2N stages for N 
length signal (for above example N=8 we have 3 stages). 
All butterflies in a stage can be performed in parallel and 
then at the end of the stage, the results can be gathered. 
Now all nodes can perform computation on the result of 
the first stage in parallel and output of the second stage 
can be gathered again and so on. Let us consider the 
decimation- in- time form of the length 8 Radix-2 
algorithm. In the first stage, we have to perform eight 
separate 2-point DHTs. In the second stage, it visibly 
breaks into two separate 4-point DHTs and in the third 
stage, we have a single 8-point DHT. Figure 2 shows the 
parallel composition of this algorithm. 

Texts in the ovals are the elements on which 
computation is performed and the numbers below the 
ovals are the threads that would perform the computation. 
Solid lines indicate communication. After every stage we 
call __syncthreads() of CUDA for the next Stage to be 
able to continue computing. In the decimation-in-
frequency form, the arrows in the above figure need to be 
reversed and the stages should be numbered from bottom-
up. So, this is just the inverse of decimation-in-time form. 
But the advantage of decimation-in-time form is that the 
result is already in the master node by the end of the last 
stage whereas in the case of decimation-in-frequency form, 
we need a result gathering phase after the last FHT stage. 

3. Experimental Results 
Experiments done on  
1. CPU: Intel(R) Core(TM) i3-2100 3,10GHz.  
2. GPU: GeForce GT 630, Max threads per block: 1024, 

Max blocks in kernel lunch: 65,535. 
To do experiments and evaluate performance of GPU 

based FHT algorithm we choose one of FTH applications 
– edge detection. For edge detection process we took some 
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well known filters. Here are edge detection filters we use 
for our experiments: 

1. (average) Averaging filter. 
2. (disk) Circular averaging filter (pillbox). 
3. (gaussian) Gaussian lowpass filter. 
4. (laplacian) Approximates the two-dimensional 

Laplacian operator. 
5. (log) Laplacian of Gaussian filter. 
6. (motion) Approximates the linear motion of a camera. 
7. (prewitt) Prewitt horizontal edge-emphasizing filter. 
8. (sobel) Sobel horizontal edge-emphasizing filter. 
First we run filters in time domain, than in frequency – 

Hartley transformed domain. To filter images in frequency 
domain we do following steps: 

1. calculate FHT of image. 
2. pad filter matrix with zeros to fit image sizes. 
3. calculate FHT of padded filter matrix. 
4. multiply results of 1 and 3. 
5. calculate inverse FHT of result 4. 
To compare time domain and frequency domain 

filtering results, we run this procedure also on the image 
with noise. For that reason we add Gaussian white noise to 
the original image. So for experiments we will choose 
Lena image and the noisy version of it (Figure 3). 

 

Figure 3. (a) Original Lena image, (b) Lena image with Gaussian white 
noise 

Figure 4 shows FHT based filtering results for above 
mentioned filters. First line is filtering results of original 
image, second line for image with noise. 

 

Figure 4. FHT based filtering results for different filters. 

In Table 1 are presented PSNRs of filtered images 
(original and noisy) for time domain and frequency 
domain. 

Table 1. PSNRs of filtered images (original and noisy) 
PSNR log motion prewitt sobel 

time domain 19.9086 24.3645 23.8381 24.3686 
with FHT 20.3227 27.1514 26.6253 26.4508 
To evaluate performance we done experiments on 

images of different sizes (Figure 5). Here we will compare 
sequential FHT (on CPU) and parallel FHT (on GPU) 
algorithms. Figure 5 shows chart of edge detection sobel 
filter calculation time for classical filtering in time domain, 
using FHT on CPU and FHT on GPU.  
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Figure 5. Sobel filter (a) in time domain (b) using FHT CPU, (c) using 
FHT GPU 

As we can see GPU based calculation give as huge gain 
in performance for large images.  

4. Conclusion 
As we can see, we gain in performance using parallel 

GPU algorithm. Parallelizing the sequential and simple 
FHT algorithms will be beneficial to control code 
complexity and minimize execution time of the process. 
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