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Abstract  The roles of water and carbon dioxide in laser/light interactions in higher-order biological systems and 
their implications in cellular microenvironments and complex systemic processes for the restoration of homeostasis-
homeokinesis, even when metabolic pathways have been compromised, are discussed. This lecture summarizes three 
decades of pre-clinical and clinical investigations and the basis for a potentially new therapeutic approach for the 
treatment of advanced cancer and other complex diseases using laser photobiomodulation. We propose that light-
water interactions offer a potent, alternate and complementary pathway to activate and modulate tumor suppression 
and/or proto-oncogenic expression through energy transfer via water and CO2 in multi-fractal regimes, leading to the 
coupling of spatiotemporal oscillators. Laser photobiomodulation may, thus, offer the possibility of targeting 
multiple hallmarks of cancer and other complex diseases using fit-for-purpose electromagnetic (light) energy to 
restore physiologically reparative and regenerative mechanisms that can help reestablish homeostasis-homeokinesis, 
constituting a new emerging paradigm in the treatment of cancer and other complex diseases. 
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1. Introduction 
Cancer and other complex diseases, including age-

related macular degeneration (AMD), diabetes, and 
Alzheimer’s disease, stand amongst the greatest human 
and scientific challenges of our time. While the mortality 
of many cancers has been falling, many carcinomas and 
most sarcomas remain largely incurable [1,2,3,4,5]. This 
scenario is made worse by an increasing and aging global 
population. According to the World Health Organization 
(WHO), global cancer deaths will rise from 7.9 million in 
2007 to 11.5 million by 2030 [5]. 

Here, we summarize three decades of investigations and 
the basis for a potentially new therapeutic approach for the 
treatment of advanced cancer and other complex diseases. 

In cooperation with national and international research 
centers, our group completed pre-clinical and clinical 
research using a first, proof of concept, infrared pulsed 
laser device (IPLD) we developed and patented [6].  

A phase I clinical trial in patients with late-stage solid 
tumors (TNM IV/UICC) found the IPLD to be clinically 
safe and to improve performance status and quality of life 
with more than 10 years of follow up [7]. Antitumor activity 
was over 88% [7]. Data showed activation and modulation 
of the immune system [8], selective activation of programmed 
cellular death (namely, apoptosis, necrosis, and anoikis) 
[9,10], and increased water content preceding tumor-volume 
reduction and therapeutic anticancer effects [11,12].  

These results precede and are remarkably consistent 
with multiple independent studies in photobiomodulation 
[13-18] and with concurrent emerging developments in 
cancer research [1,2,4,19-24]. 

 
Figure 1. Photo-infrared pulsed photobiomodulation mechanism. ©Mary 
Ann Liebert, Inc. Publishers, 2005. (Ref. [25]) 

To explain these findings, we have documented their 
structural, kinetic, and thermodynamic implications and 
detailed mechanisms (Figure 1, Figure 2, Figure 3). 
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Figure 2. Water oscillator paradox mechanism. ©Mary Ann Liebert, Inc. 
Publishers, 2010. (Ref. [26]) 

 
Figure 3. Use of exclusion zone (EZ) water as a selective, rechargeable, 
electrolytic biobattery. ©Mary Ann Liebert, Inc. Publishers, 2012. (Ref. 
[27]) 

Together, these mechanisms substantiate one basic 
premise: that external electromagnetic energy supplementation 
can enhance and even substitute for endogenous ATP to power 
and modulate physiologically reparative and regenerative 
mechanisms that can help reestablish homeostasis-
homeokinesis, even when metabolic pathways have been 
compromised [10,25,26,27,28,30,31] 

2. Basis for Selective, Non-invasive, Long-
range, External Energy Supplementation 
and Absorption 

Selective, non-invasive, long-range, external energy 
supplementation is based on the idea that physiologic 
processes (fluctuations and/or oscillations) can be activated 
and synchronized through the body’s preeminent medium, 
water, CO2 and membrane receptors. While a full elucidation 
of these ideas can be found elsewhere [29], it is worth 
reviewing some of its bases [25,32,33]. 

According to the Stark–Einstein law, only absorbed 
light can trigger photochemical change [32]. At less than 
1100 nm, the absorption coefficient (AC) of water is low 
[34]. In materials with a low AC, light propagates with 
little attenuation. Hence, pulses as short as 60 fsec with a 
center wavelength of 800 nm can propagate through as 
much as 6 m of water [26,32,35,36]. Despite its low AC in 
the 600-1100 nm range, water is a major biologic 
photoacceptor for several reasons.  

First, the adult human body is approximately 70% water 
by weight. In pure numbers, given its small molecular 
weight, 99% of our molecules are water. Hence, water is a 
major absorption target even for wavelengths with low 
AC’s [26,32]. Second, high-AC values can establish 
harmonic or anharmonic resonance with water at lower or 
higher intervals (Figure 4). 

 

Figure 4. Black body curve of water ©Mary Ann Liebert, Inc. Publishers, 
2005 (Ref. [26]) 

For instance, light’s bandwidth to water’s absorption 
bandwidth is similar at 800nm (0.36) and 1450nm (0.34), 
where there is strong resonance in water [35,36]. These 
values match a peak in biologic action spectra at 800 nm, 
where absorption by other chromophores, such as CcO, is 
relatively low [35,36]. In the 900-940 nm range, higher 
AC’s coincides with another peak in action spectra [35,36] 
and with the black-body radiation of the human body. As 
wavelengths increase, AC is greater, but photon 
energy/penetration and ligand activity may decrease 
[26,32,34]. 

Third, photo-induced vibrations in water can be seen as 
Hamiltonian dynamic systems [37]. Hamiltonian dynamics 
normally conserve energy, though they can also exist in 
dissipative systems. When their degrees of freedom exceed 1, 
Hamiltonian dynamics are very complex [37]. Water and 
CO2 molecules have 3 degrees of freedom in terms of 
movement, plus ½ degree attributable to time-dependence. 
Hence, water vibrations display extremely complex, 
nonlinear, time-dependent chaotic behavior [38,39]. 

Chaos is essential for everything from the stability of 
the solar system to cell homeostasis [26]. In chaotic 
systems, the interaction among nonlinear molecules with 
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different degrees of freedom is strongly enhanced despite 
the smallness of coupling constants [26,37]. In addition, 
multi-fractal systems such as the human body can be in 
resonance while energy is transferred among different 
modes or trajectories [26,37], magnifying energy absorption 
and transport through extended biologic surfaces.  

Resonant intermolecular energy transfer in aqueous 
solutions is faster than vibrational energy relaxation [40] 
and exhibits non-adiabatic relaxation. Such fast energy 
transfer is possible because protons act as moving targets, 
rapidly switching from one species to the next based on 
the number of water molecules with which they are 
associated [40]. 

Energy is selectively absorbed by target tissues in 
accord with the second law of thermodynamics and its 
extension for non-equilibrium thermodynamics: Onsager’s 
theory of reciprocal relations as it applies to the 
thermodynamics of irreversible processes [42,43]. This 
occurs because redox potential differences between degrading 
and well-oxygenated tissues translate into injury potentials 
of up to 1.5 V in advanced cancer [44] (Figure 5). 

 

Figure 5. Diagram of proposed mechanisms. © Pan Stanford Publishing 
Pte (Ref. [32]) 

3. Downstream Effects 
Our studies show that water provides potent pathways 

for light energy absorption, transport as well as charge 
storage, separation and subsequent release that can 
substitute and/or complement metabolic energy pathways 
through oxygen-dependent and independent effects with 
critical signaling pathways in primarily aqueous media 
[32,33,45]. In particular, the enhanced structuring of water 
favors the physiologic activity of energy-dependent 
network proteins and signaling nodes such as P53, PTEN, 
m-TOR, MYC, RB, NF-κB, and VHL, to mention a few 
of the transcription factors and genes which are often 

deregulated in cancer and other complex diseases 
[7,25,27,46-53]. 

Light can activate and regulate/modulate metabolic 
control levels [25,26,27] via two synergic pathways: 1- via 
molecular hydrophobic forces, including the folding and 
unfolding of proteins and the self-assembly of DNA/RNA 
[54,55]; and 2- via hydrophilic interfaces such as the 
exclusion zone (EZ) with its amazing potential for charge 
separation and storage, which can fuel the flow of protons 
[51] for cell signaling and the transfer of OH electrons as 
an energy reservoir for cellular work [27,33,34,35,36,56]. 

This is possible because the human body is a complex, 
dynamic (non-lineal), electrochemical system that is 
energy-dependent, thermodynamically open, primarily 
aqueous, deterministic and non-fully deterministic [10]. 
As such, the body displays a marked contrast between 
robustness, fragility and adaptability [10]. In it, 30% to 
50% of proteins, RNA and DNA synthesized [26,57,58] 
are destroyed and re-synthesized. Remarkably, research 
suggests that oxidative proteome damage may be the most 
likely cause of aging and age-related diseases such as 
cancer and other complex diseases [58,59]. 

Such energy-intensive process, which requires no 
choreography [60,61] and involves millions of oscillations 
at all spatiotemporal scales, allows for adaptability that is 
as the heart of evolution. In contrast, cancer, and other 
complex diseases are marked by involution, or loss of 
differentiation and function, along with deregulation of 
apoptosis and other forms of programmed cellular death 
[45].  

It has been argued that the study of self-organizing 
networks with system wide dynamics, such as metabolic 
and signaling pathways, may provide insights into the 
pathogenesis and treatment of complex diseases [24] 
(Figure 6).  

 

Figure 6. Complexity vs. Order (modified image from figure in 
http://www.necsi.edu/projects/mclemens/state_sp.gif.) 

In addition, fresh publications report that: “pre-clinical 
and clinical research has provided evidence that cancer 
progression is driven not only by a tumor’s underlying 
genetic alterations and paracrine interactions within the 
tumor microenvironment, but also by complex systemic 
processes” [24]. 

4. Conclusions 
We propose that light-water interactions offer a potent, 

alternate and complementary pathway to activate and 
modulate tumor suppression and/or proto-oncogenic 
expression through energy transfer via water and CO2 in 
multi-fractal regimes, leading to the coupling of spatio-
temporal oscillators [10,19,45,62].  

Laser photobiomodulation may, thus, offer the 
possibility of targeting multiple hallmarks of cancer 
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[62,63] (Figure 7) using fit-for-purpose electromagnetic 
(light) energy to restore physiologically reparative and 
regenerative mechanisms, that can help reestablish 
homeostasis-homeokinesis, [10,19,30,31,45,62]. While not a 
panacea, this approach offers unique potential. Challenges 
include developing and testing a new advanced treatment 
system and documenting its underlying mechanisms. 
Because light-based systems can be less expensive than 
many cancer drugs, we hope that this approach may lower 
treatment costs while raising anti-cancer effects, standard 
of care and quality of life/functional status, particularly, 
for the most vulnerable, such as the elderly, the poor and 
those suffering from currently-untreatable late stage 
disease [62]. 

 

Figure 7. Photobiomodulation aimed at reestablishing homeostasis / 
homeokinesis by targeting multiple hallmarks of cancer. (Adapted from 
Figure 3 and Figure 6 in Ref. [63]) 
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