Verifying Traffic Ban Effects on Air Pollution

Andrea Trentini
Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
*Corresponding author: andrea.trentini@unimi.it

Received February 22, 2015; Revised March 04, 2015; Accepted March 13, 2015

Abstract Air pollution started to become a problem for human beings with the industrial revolution, but nowadays, with the introduction of laws against emissions (e.g., the EuroX normative), the situation is getting better. Moreover, governments must constantly monitor pollution levels to check policies effects. This article describes a method to verify traffic ban effect claims on air pollution using monitored data. In Lombardia (our region), ARPA (the local EPA) maintains pollution monitoring stations from downtown Milano to remote places near the mountains since 1999. Measured data are “somewhat” available through ARPA’s website. “Somewhat” because a CAPTCHA protected download request form must be filled up for every combination of (station, pollutant, time-frame < 1 yr). In 2003 the Lombardia government introduced a vehicle ban to reduce air pollution. Then, more recently (in 2008 and 2012) the Milano City Council introduced a stricter ban. The author implemented an automated (in place since 2004) data collecting “web gatherer” to overcome ARPA’s overcomplicated download procedure and, above all, to verify air pollution reduction claims. Data are published on the author’s website and this paper presents a method to analyse effects on air pollution and to verify policies claims.

Keywords: open data, public accountancy, pollution, particulate matter, anti-pollution policies, web scraping, vehicle banning

1. Introduction

Air pollution started to become a problem for human beings with the industrial revolution [14,19,20]. During the second half of the twentieth century pollution skyrocketed to the extension that some notable high peaks were even given a name such as the “Great Smog of ‘52” [7]. After the seventies many governments started to legislate [23] to try to reduce industrial (plants, materials, transportation, power generation, etc.) emissions. From then on, air pollution slowly began to decrease as new generations of technologies replaced older ones [see Figure 1 and all the graphs retrievable from ARPA: http://ita.arpalombardia.it/ITA/qaria/img/qaria/graficiInqNew/<province>_<pollutant>.png such as http://ita.arpalombardia.it/ITA/qaria/img/qaria/graficiInqNew/MI_PM10.png]. A typical example context is the set of land transportation technologies (i.e., vehicles) we use every day to commute, to travel, to have fun, etc. Since the original “Clean Air Act” [23], cars, motorbikes, buses, etc. makers have been compelled to fulfill ever updated emission requirements. Stricter rules substitute older ones as technologies progress. Europe has followed this trend with the so-called EuroX legislation [10] to impose maximum emission limits for every type of car/engine (gasoline, diesel, 4-stroke, 2-stroke, hybrid-electric, etc.) produced and sold. As an example, for passenger vehicles (cars), EuroX rules define the following pollutants that should be regulated: CO (Car-bon Monoxide), THC (Hydrocarbon), NMHC (Non-methane hydrocarbons), NOx (Nitrogen oxides), HC + NOx, PM (Particulate Matter), Pn (Particle number, this last one is still in the process of being detailed, it is not part of the rules). It is also important to note (it will be useful later) that EuroX1 rules do not impose limits to PM for gasoline vehicles, since gasoline (4-stroke) engines do not produce any PM (Hydrocarbon), NMHC (Non-methane hydrocarbons), NOx (Nitrogen oxides), HC + NOx, PM (Particulate Matter), Pn (Particle number, this last one is still in the process of being detailed, it is not part of the rules). It is also important to note (it will be useful later) that EuroX1 rules do not impose limits to PM for gasoline vehicles, since gasoline (4-stroke) engines do not produce any PM [17] for practical purposes. Moreover, many countries declared laws- e.g. Europe [9] - to limit pollution concentration in the air. Europe legislation was adopted in Italy by defining the upper bounds, here presented with the measured (see tables in section 2) averages in 2013:

- \(SO_2 < 125 \mu g/m^3\), 2013 average: < 5 \(\mu g/m^3\) (very low)
- \(P M 10 < 50 \mu g/m^3\), 2013 average: 38 (almost low, see next paragraph)
- \(P M 2.5\) (it is not yet specified but already monitored since EU commission is still debating about it, the proposed limit is 20), average in 2013: 29 (high)
- \(NO_2 < 200 \mu g/m^3\), 2013 average: 86 (low)
- \(CO < 10 \mu g/m^3\), 2013 average: 1.5 (very low)
- \(O_3 < 180 – 240 \mu g/m^3\, 2013 average: 30 (very low)
- Benzene (no bounds), 2013 average: 1.4

\(P M 10\) is also monitored in terms of the number of limit excesses during the year, and the number of excesses should remain under a fixed number (usually 35). This is

1 Except for Euro5 that specifies a PM upper bound emission only for direct injection gasoline engines.
2 Monitoring stations print this value under low concentration conditions.
because \(P M 10 \) is a very cyclical pollutant: it raises during the winter and it decreases during the summer. Currently, in Lombardia, even if the \(P M 10 \) yearly average is below the limit, the number of excesses still exceeds the EU prescription.

Summing up: almost every monitored pollutant is below the upper limit and the only one that should be taken into account is Particulate Matter \((P M 10 \text{ and } P M 2.5) \).

Around the year 2000, despite the downward trends in air pollutants, some Italian local governments started introducing legislation restricting the use of private vehicles due to a supposed “upward trend” in pollutants. Many vehicle owners could no longer drive their cars, motorbikes, etc. while still paying ownership taxes and mandatory insurance. Even in case of gasoline vehicles that do not produce \(P M 10 \) and \(P M 2.5 \). While public transport buses with very old (average public vehicles age is about 20 yrs in Italy) diesel engines could pollute without any limitation. The difficulty to understand (engine, pollution, etc.) technologies [18] is probably the source of this “unreasonable” if proven unsuccessful/useless.

Figure 1. \(NO_2 \) (since 1990) and \(SO_2 \) (since 1970) trends with upper bound (red line), source: ARPA

Of course the ban proposal worried many citizens to no small end. In fact, the author of this paper, when reading the proposed banning rules and, above all, the motivations (the aforementioned supposed air pollution increase), began searching for information about air pollution and technical data to write an “open letter to the administration” that circulated on media and among citizens. He found out about EuroX legislation, about what other countries did (almost never permanent bans, and banned vehicles could always be upgraded to cleaner ones with aftermarket components, some- thing not allowed by present Italian legislation) and about ARPA air monitoring. The letter disclosed the many incongruities in the proposed ban and brought some technical awareness in politicians and citizens: eventually the Lombardia ban was softened, i.e., applied to very old vehicles due to a supposed “upward trend” in pollutants.

ARPA Lombardia EPA (Environment Protection Agency) maintains a network of pollution monitoring stations from downtown Milano to remote places near the mountains since 1999. The author accessed the ARPA website to learn if historical data were available as a download, with the intent of seeing for himself what the trends observed by ARPA really were without having to rely on the mass media and other secondary sources. And data were there, available for download and in proper format: CSV (Comma Separated Values) files, i.e., 3 stars [4] Open Data graded. But with some web-stacle (web+obstacle crisis) to impede full data ex- ploitation.

If a citizen wanted to collect one data subset he should fill and submit a web form, then data are sent by email (i.e. the procedure is not annoy- mous). Moreover, the citizen can only request a data subset for each form submission, i.e.: one sin- gle station, one single pollutant, one single time-frame smaller than one year. Summing up, if a citizen needs the whole dataset he/she should pre- pare him/herself to complete about 80 (stations) x 7 (pollutants per station) x 15 (years of monitoring) requests, by hand. Yes, by hand since the download request web form is CAPTCHA3 protected. This overcomplicated procedure is the motivation for the author’s decision to create an automatic web grab- bing (see 2.1) system, it was then developed and it is working almost continuously since 2005.

In recent years (starting around 2008) the Milan City Council started using very similar meth- ods as those used by the Lombardia local govern- ment in 2003 to justify introducing a congestion charge, first called “Ecopass” and then “Area C”, in an 8 \(km^2 \) area roughly corresponding to that inside the XVI century Spanish Walls. The name change is very telling, as it was introduced after its air-pollution reducing effectiveness was debated by media and citizens. Still, the legal (and po- litical) justification of “Area C” is heavily based to this day on the idea it’s used to fight pollution

3 Completely Automated Public Turing test to tell Computers and Humans Apart.
1.1. Open Data...

Open Data has become a worldwide movement involving governmental and non-governmental ac- tors. The Open Knowledge Foundation (OKF) was one of the first organizations to define “open- ness” in this context and it has recently given birth to [16] to formalise meta- knowledge about open knowledge. The OKF definition of “open- ness” can be quoted as: “A piece of data or content is open if anyone is free to use, reuse, redistribute it - only subject, at most, to the re- quirement to attribute and/or share-alike”. More- over, Tim Berners-Lee [4] defined a five star rat- ing for Open Data to highlight the importance of not just legal but also technical aspects of open- ness, for example through the use of open standards and non-proprietary file formats for Open Data publishing. More broadly, Berners-Lee and others [3,5] promoted the concept of Linked Open Data to transform “data on the web” into “the web of data” by encouraging the linking of Open Data White Paper [11] states that Open Government Data is “Public Sector Information that has been made available to the public as Open Data” and de- fines Public Sector Information (PSI) as “data and information redistribution.

The complete GPL licensed sources are available on the author's website http://arcipelagoareac.it. The procedure generates a set of CSV files containing chronological data.

2.2. Analysis

The Comune di Milano, through its division AMAT (Agenzia Mobilità Ambiente Territo-rio) claims [1,2] (and other documents present on http://www.amati- mi.it/it/documenti/monitoraggio-area-c/, in italian) the following “measured” effects:

- exhaust PM10 = -58% (wrt 2010)
- total PM10 = -40% (wrt 2010)
- Elemental Carbon = -61% (wrt 2010)
- Organic Carbon = -33% (wrt 2010)
- Ammonia = -48% (wrt 2010)
- NOx, volatile organic matter, benzopirene = unquantified decrease (wrt 2010)
- CO2 = -29% (wrt 2010)
- Methane = -19% (wrt 2010)
- NO2 = -24% (wrt 2010)
- unspecified decrease of air pollutants inside. “Area C” compared to the area outside.
Please bear in mind that the above claims are not based on air pollution measurement but on computed figures only. AMAT declares to use the COPERT [13] method to associate an “emis- sive weight” to every vehicle, then it multiplies that weight by the number of vehicles entering “Area C” (1). AMAT and the Comune di Milano do not own/maintain permanent and EU certified air pol- lution measuring stations. While ARPA does, of course.

Moreover, AMAT lists a non-standard - accord- ing to EU norms [9] - set of to-be-evaluated air elements:

- one item is not considered a “pollutant”, CO₂ is a “greenhouse gas” and it is neither monitored nor limited
- some elements (Carbon, Ammonia, Methane) are not EU regulated so there are no specified upper bounds to comply with and they are not continuously monitored, i.e., there is no publicly available downloadable historical data
- “exhaust” and “total” PM10 cannot be discerned easily/directly [21] and, again there is no separate EU prescription

- they do not take into account EU prescribed pollutants such as CO and Benzene (1) I.e., AMAT uses a non-standard model.

In general, ARPA stations can monitor the fol- lowing EU specified pollutants: SO₂, PM 10, PM 2.5, NO₂, CO, O₃, Benzene, but not every sta- tion can sense all the pollutants, e.g. station nr. 548 (see below) can measure just PM 10, PM 2.5, NO₂, CO and Benzene.

Since many elements in the original AMAT list are not EU regulated and no downloadable data are available, the author will only discuss items for which he has data, i.e., Elemental Carbon, Or- ganic Carbon, Ammonia, Methane and CO₂ will be dropped from discussion.

For the remaining pollutants we will focus on the ones still exceeding the limits (see list in 1), i.e., PM 10, PM 2.5. We will use data from one station inside “Area C” to verify trends claims and we will compare data from two stations, one inside and one outside, to verify the decrease claim inside “Area C”:

- Milano Senato, nr.548, inside “Area C”, 1km from the city centre, halfway to the “Area C” boundary PM10, PM2.5, NO₂, CO and Benzene http://ita.arpalombardia.it/ITA/qaria/stazione_548.asp
- Limito Pioltello, nr.531, outside “Area C” (no ban on any vehicle), 12km from the city centre SO₂, PM10, NO₂, CO, O₃ http://ita.arpalombardia.it/ITA/qaria/stazione_531.asp
Claims of a reduction in pollutants inside the congestion charge area can be disproven by comparing data from monitoring stations inside (with ban) and outside (without ban) of this area. Monthly differences (plotted in Figure 2 with the difference averages) show that the "effect" of ban- ning vehicles in Milano city centre may be around 20% (0.5σ (2008) and a bad +0.5σ (2011) but a question arises: from 2008 to 2013 forms of vehicle banning were always in place, so why the difference is so low and rippling? Please also note that the Comune di Milano declares [1] a 30% traffic decrease due to banning. The average of monthly differences is -1.60, against a standard de- viation of about 28 in the measured PM 10 values (in & out), i.e., 0.66σ only. To thoroughly and formally test the effectiveness of “Area C”, the author has applied an hypothesis test using Pioltello station as a control group and testing for the hypothesis $H_0 : \mu_{\text{in}} - \mu_{\text{out}} = 0$, i.e., whether the area inside “Area C” is cleaner then outside. Results are listed in Table 2. The hypothesis can be accepted for only 7 cases out of 24 and using values of α quite generous for today standards [12]. Moreover in 14 cases out of 24 the hypothesis is badly rejected. The same test was iterated over every sta- tion pair in Milan and outside with similar results. The conclusion is that “Area C” (and the previ- ous “Ecopass”) has no positive effect on Milan air pollution.

Table 1. Milano Senato yearly averages (with bounds)

<table>
<thead>
<tr>
<th>Year</th>
<th>PM10 ≤ 50</th>
<th>PM2.5 (proposed < 20)</th>
<th>NO₂ ≤ 200</th>
<th>CO ≤ 10</th>
<th>Benzene (unbounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>39.39</td>
<td>NA</td>
<td>93.50</td>
<td>0.86</td>
<td>1.43</td>
</tr>
<tr>
<td>2009</td>
<td>44.39</td>
<td>NA</td>
<td>113.66</td>
<td>1.40</td>
<td>2.10</td>
</tr>
<tr>
<td>2010</td>
<td>40.10</td>
<td>NA</td>
<td>100.71</td>
<td>1.51</td>
<td>1.20</td>
</tr>
<tr>
<td>2011</td>
<td>48.92</td>
<td>NA</td>
<td>100.01</td>
<td>1.61</td>
<td>1.44</td>
</tr>
<tr>
<td>2012</td>
<td>42.25</td>
<td>36.56</td>
<td>82.96</td>
<td>1.32</td>
<td>0.53</td>
</tr>
<tr>
<td>2013</td>
<td>38.03</td>
<td>29.28</td>
<td>86.27</td>
<td>1.49</td>
<td>1.40</td>
</tr>
<tr>
<td>2014</td>
<td>44.96</td>
<td>37.34</td>
<td>91.39</td>
<td>1.70</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Table 2. PM10 seasons, in/out and hypothesis test results

<table>
<thead>
<tr>
<th>Season</th>
<th>μ_{in}</th>
<th>σ_{in}</th>
<th>μ_{out}</th>
<th>σ_{out}</th>
<th>Z</th>
<th>P-value</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-03-21-2008-06-20</td>
<td>36.2</td>
<td>9.855</td>
<td>27.94</td>
<td>11.21</td>
<td>17.28</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2008-06-05-2008-09-22</td>
<td>35.75</td>
<td>12.37</td>
<td>25.63</td>
<td>10.3</td>
<td>28.89</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2008-09-23-2008-12-21</td>
<td>42.63</td>
<td>21.91</td>
<td>41.97</td>
<td>24.83</td>
<td>1.15</td>
<td>0.87</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2008-12-22-2009-03-20</td>
<td>70.53</td>
<td>30.9</td>
<td>82.02</td>
<td>39.94</td>
<td>-13.73</td>
<td>3.5e-3 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2009-03-21-2009-06-20</td>
<td>32.25</td>
<td>14.42</td>
<td>32.28</td>
<td>15.18</td>
<td>-0.064</td>
<td>0.475</td>
<td>rejected</td>
</tr>
<tr>
<td>2009-06-21-2009-09-22</td>
<td>27.67</td>
<td>9.82</td>
<td>24.96</td>
<td>9.428</td>
<td>7.33</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2009-09-23-2009-12-21</td>
<td>55.53</td>
<td>28.37</td>
<td>57.09</td>
<td>25.99</td>
<td>-2.441</td>
<td>0.007 < 1%</td>
<td>~ accepted</td>
</tr>
<tr>
<td>2009-12-21-2010-03-20</td>
<td>61.71</td>
<td>28.19</td>
<td>66.13</td>
<td>27.77</td>
<td>-7.681</td>
<td>7.9e-15 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2010-03-21-2010-06-20</td>
<td>20.07</td>
<td>12.56</td>
<td>26.41</td>
<td>12.74</td>
<td>4.011</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2010-06-21-2010-09-22</td>
<td>24.66</td>
<td>11.17</td>
<td>22</td>
<td>10.8</td>
<td>7.189</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2010-09-23-2010-12-21</td>
<td>48.93</td>
<td>38.6</td>
<td>40.88</td>
<td>24.26</td>
<td>15.34</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2010-12-21-2011-03-20</td>
<td>79.7</td>
<td>43.51</td>
<td>66.87</td>
<td>35.88</td>
<td>19.03</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2011-03-21-2011-06-20</td>
<td>31.81</td>
<td>15.61</td>
<td>34.98</td>
<td>16.79</td>
<td>-7.121</td>
<td>5.35e-13 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2011-06-21-2011-09-22</td>
<td>23.83</td>
<td>10.59</td>
<td>25.28</td>
<td>8.629</td>
<td>-4.463</td>
<td>4.0e-6 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2011-09-23-2011-12-21</td>
<td>58.47</td>
<td>26.17</td>
<td>48.13</td>
<td>21.31</td>
<td>20.65</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2011-12-22-2012-03-20</td>
<td>79.95</td>
<td>36.33</td>
<td>65.21</td>
<td>28.41</td>
<td>23.94</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2012-03-21-2012-06-20</td>
<td>27.26</td>
<td>15.68</td>
<td>19.28</td>
<td>8.81</td>
<td>24.78</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2012-06-21-2012-09-22</td>
<td>23.49</td>
<td>11.58</td>
<td>18.66</td>
<td>5.677</td>
<td>17.08</td>
<td>1</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2012-09-23-2012-12-21</td>
<td>47.58</td>
<td>25.03</td>
<td>54.23</td>
<td>27.37</td>
<td>NA</td>
<td>NA</td>
<td>accepted</td>
</tr>
<tr>
<td>2012-12-22-2013-03-20</td>
<td>55.1</td>
<td>23.14</td>
<td>59.18</td>
<td>28.25</td>
<td>-6.96</td>
<td>1.7e-12 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2013-03-21-2013-06-20</td>
<td>30.23</td>
<td>18.88</td>
<td>30.46</td>
<td>18.48</td>
<td>-0.471</td>
<td>0.32</td>
<td>rejected</td>
</tr>
<tr>
<td>2013-09-23-2013-12-21</td>
<td>47.55</td>
<td>27.38</td>
<td>46.76</td>
<td>31.6</td>
<td>1.212</td>
<td>0.89</td>
<td>badly rejected</td>
</tr>
<tr>
<td>2013-12-22-2014-03-20</td>
<td>46.14</td>
<td>24.93</td>
<td>49.37</td>
<td>27.48</td>
<td>-5.185</td>
<td>1.08e-07 < 0.5%</td>
<td>accepted</td>
</tr>
<tr>
<td>2014-03-21-2014-06-20</td>
<td>39</td>
<td>16.13</td>
<td>39.68</td>
<td>20.3</td>
<td>-0.7099</td>
<td>0.239</td>
<td>rejected</td>
</tr>
</tbody>
</table>
Table 1, Table 2 and Figure 2 were created using ARPA scraped data and generated by a sqlite3+gnuplot+bash script.

3. Conclusion

The method presented in this article aims at verifying the claims on traffic ban effects on air pollution, it is based on data gathered by monitoring stations spread throughout a metropolitan region. The method can be summarized as follows:

1. gather (by web scraping or just download if available) chronological data related to monitoring stations inside and outside the supposedly affected area
2. compute averages (by periods such as seasons) on every pollutant
3. apply hypothesis tests using outside stations, as a control group

This article also describes the author’s data collecting and analysis work to overcome the artificial barriers raised by ARPA Lombardia to “protect indiscriminate and analysis work to overcome the artificial barriers raised by ARPA Lombardia to “protect indiscriminate and analysis work to overcome the artificial barriers raised by ARPA Lombardia to “protect indiscriminate and analysis work to overcome the artificial barriers raised by ARPA Lombardia to “protect indiscriminate and analysis work to overcome the artificial barriers raised by ARPA Lombardia to “protect indiscriminate

Data gathered during almost ten years (2005 through 2014) were useful to verify and, alas, prove traffic restrictions adopted in the Milan area to decrease air pollution ineffective. Data show that the two main Milan (Italy) banning laws, “Ecopass” (2008) and “Area C” (2012), had almost undetectable effects on air pollution. This conclusion is in fact consistent with the London Transport technical report [22] about the London congestion charge, similar to “Area C”: “Even so, trends in actual measured air quality continued to primarily reflect the diversity and dominance of external factors in determining pollution concentrations and, as such, did not allow the identification of a clear ‘congestion charging effect’.” Despite substantial reductions to road traffic emissions in London, trends in measured air pollution remain broadly static.

The whole set of collected data has been made freely available on the web as a set of CSV files on the author’s website: http://arcipelagoareac.it/CSV, updated daily.

References