Unified Field Theory and Topology of Nuclei

Zhiliang Cao, Henry Gu Cao

  Open Access OPEN ACCESS  Peer Reviewed PEER-REVIEWED

Unified Field Theory and Topology of Nuclei

Zhiliang Cao1, 2,, Henry Gu Cao3

1Wayne State University, 42 W Warren Ave, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Deerfield High School, Deerfield, IL 60015

Abstract

Even though all isotopes for each element are well studied, the structures of their nuclei are still unknown. This paper examines the topology and stability of ground state isotopes of major elements. According to Unified Field Theory (UFT), a proton has the shape of an octahedron. The nuclei result from protons and neutrons piling up. Since the strong forces are along the axes of the octahedron of protons and neutron, the structure of ground state isotopes of any given element can be logically induced. Only two of three axes of the octahedron nucleus have strong interactive forces internally. The structure starts with one or two base squares and accumulates smaller squares along the axis of the base squares in both directions. The possible proton base structures are square shaped. For example, the Technetium nucleus has one proton too many to be symmetrical. Therefore, no stable isotopes of Technetium can be found.

At a glance: Figures

Cite this article:

  • Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and Topology of Nuclei." International Journal of Physics 2.1 (2014): 15-22.
  • Cao, Z. , & Cao, H. G. (2014). Unified Field Theory and Topology of Nuclei. International Journal of Physics, 2(1), 15-22.
  • Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and Topology of Nuclei." International Journal of Physics 2, no. 1 (2014): 15-22.

Import into BibTeX Import into EndNote Import into RefMan Import into RefWorks

1. Introduction

Before publication of UFT (e.g. [1, 2, 3, 4, 5]), the Lattice model (e.g. [7-31][7]) is considered one of the best nuclear models so far. Even though it is more complex than the old water drop model (e.g. [32, 33, 34, 35, 36]), it can not predict the stabilities of Technetium (e.g. [37-53][37]).

Without knowing the structures of proton and neutron, the topology of the nucleus is “unclear”. Fortunately, an important prediction of UFT regarding nuclear structure is the shapes of the particles (e.g. [5]). A nucleus is made up of protons and neutrons. Both proton and neutron share the same octahedron shape.

Octahedron protons and neutrons pile themselves up to make a nucleus. The configuration of proton/neutron octahedron pile decides the characteristics of a nucleus.

This paper analyzes the piling structures for some stable nuclei and unstable nuclei. The stability of a nucleus is largely based on whether the piling is symmetrical or not. A symmetrical nucleus is stable; otherwise, it is not stable.

2. Topology of Nuclei

The following UFT concepts will be used extensively in the paper:

The main structure of the Proton and Neutron are their axes (e.g. [5]): A2, A2 and A (some time B).

The component “A” has the following mass formula:

A = (2*3*5)

In addition,

A2 = (2*3*5)* (2*3*5)

Component “B” has the following mass formula:

B = 2*2*4

2.1. Nuclear Base Square

When the proton count is more than four, the protons and neutrons are piled on a 2D plane formed by two main octahedron axes A2 and A2. The particles are aligned along the octahedron axes so that the strong waves are in resonance along the straight lines.

When the proton count is seventeen, a 2D base square of 3*3 is formed.

In the 2D base square, neutrons are more stable if they are paired along the lines that are vertical to octahedron axes. For a 3*3 neutron formation, additional neutron is added to the base square when the pile is more than one layer.

2.2. Particle Piling

A proton has a single charge. The charged forces are evenly distributed across the eight faces of the proton (e.g. [5]).

The proton structure needs to be symmetrical to make the structure stable. The protons and neutrons are piled on 2D plane form by two octahedron axes first. The additional particles are piled on both side of 2D plane symmetrically.

When a nucleus has enough protons, the center of nucleus preferred to be one neutron. In some cases, it can be proton as well. The octahedron shaped neutron/proton at the center of the nucleus has a proton at each of six ends of its three axes. From the center of the nucleus, the preferred piling sequence is neutron/proton à proton à neutron,… The three axes’ directions will grow symmetrically into the main structure of the nucleus and make a large nucleus octahedron shape.

3. Bonding Forces

3.1. Deuterium

A deuterium (e.g. [54-61][54]) nucleus has a proton and a neutron. It is a stable symmetrical nucleus.

Mass:

Deuterium:

3671.48294(22) e or 2.01410178u

Proton + Neutron:

3674.836332953(59)e or 2.015941382812u

Lost Energy:

3.35339e or 0.00183960u

Original:

(2A2 + A + 2*3 + 0.15267) +

(2A2 + A + 2*3 + 2.5 + 0.15267 + 0.030987)

Combining two particles share 2*3 component as 3*3:

Proton: (2A2 + A + 0.15267) +

Neutron: (2A2 + A + 2 + 0.15267 + 1/(900*2*2))

Sharing: 3*3

Binding: 0.1782

Lost: 3.35339

Binding Energy

137/900+ 137/(900*2*3) +(2*2*3)/(137*137) = 0.1782

3.2. Tritium

A deuterium (e.g. [62-69][62]) nucleus has a proton and two neutron.

Mass:

5497.9213(56)e or 3.0160492u

Proton + 2Neutron:

5513.519993448(72)e or 3.024606298812u

Lost Energy:

15.598636(88)e or 0.0085570(98)u

Original:

(2A2 + A + 2*3 + 0.15267) +

2*(2A2 + A + 2*3 + 2.5 + 0.15267 + 0.030987)

A proton is at the center and the three particles are not identical. Combining three particles eliminates 2*3 wave and weak interactions related to 2*3:

Proton: (2A2 + A+137/900)

Neutrons:

2*(2A2 + A + 2 +137/900)

Sharing: 2*2

Binding: 0.464(6)

Lost: 15.598636(88)e

Binding Energy

3*137/900+137/(900*2*2*5) = 0.464

3.3. Helium-3

A helium-3 (e.g. [70-78][70]) nucleus has two protons and a neutron. It is a stable symmetrical nucleus.

Mass:

5497.8851158(96)e or 3.0160293191u

2Proton + Neutron:

5510.9890054(12)e or 3.023217849624u

Lost Energy:

13.1038896e or 0.00718853u

Original:

2(2A2 + A + 2*3 + 0.15267) +

(2A2 + A + 2*3 + 2.5 + 0.15267 + 0.030987)

Neutron is at the center and three particles are not identical. Sharing 2*3:

Protons: 2*(2A2 + A + 137/900)

Neutrons: (2A2 + A + 1.5)

Sharing: 2*3

Binding: 0.08

Lost: 13.1038896e

Binding Energy

137/(900*2) =0.08

3.4. Helium-4

A helium-4 (e.g. [70-78][70]) nucleus has two protons and two neutrons. It is a stable symmetrical nucleus.

Mass:

7296.2993815(97)e or 4.00260325415u

2Proton + 2Neutron:

7349.6726659(07)e or 4.031882765624u

Lost Energy:

53.3732844e or 0.0292795u

Original:

2*(2A2 + A + 2*3 + 0.15267) +

2*(2A2 + A + 2*3 + 2 + 0.15267 + 0.030987)

Two neutrons are at the center, without a structure, no strong binding within protons and neutrons, add proximately 1/9 charging energy:

Protons: 2*(2A2 +2*2*4 + 2*2)

Neutrons: 2*(2A2 + 2*2*4 + 2*2+ 2)

Sharing: 2*3+2*4

Binding: 0.3

Lost: 53.3732844e

Binding Energy

2*137/900 = 0.3

4. Single Layer Proton Pile Nuclei

4.1. Hydrogen

A hydrogen (e.g. [79-96][79]) nucleus with a single proton is the simplest stable symmetrical nucleus.

A deuterium nucleus has a proton and a neutron. It is a stable symmetrical nucleus.

A tritium nucleus has a proton and two neutrons. It is a symmetrical but unstable nucleus and can be decayed into a Helium atom through beta decay.

4.2. Beryllium

A Beryllium-9 (e.g. [97-107][97]) nucleus has four protons and five neutrons. It is a stable symmetrical nucleus.

Mass: 16428.2031561(66)e

Possible structural formula:

Protons: 4*(2A2 +2*2*4 + 2*2)

Neutrons: 5*(2A2 + 2*2*4 + 2*2 +0.5)

Sharing: 9*1

Binding: 0.70315616(59)

4.3. Phosphorus

A Phosphorus-31 nucleus has fifteen protons and sixteen neutrons. It is a stable symmetrical nucleus

5. Multi Layer Nuclei

5.1. Potassium

A Potassium-41 (e.g. [108-113][108]) nucleus has nineteen protons and twenty two neutrons. It is a stable symmetrical nucleus.

Atomic number: 19

The Structure for 41Potassium:

Base: Proton 3*3 + Neutron 2*2

Second Layer: Proton 2*2*2 + Neutron 2*5

Third Layer: Proton: 2*1 + Neutron 2*2

Mass: 74668.8404982(26)e

Possible structural formula:

Protons: 19*(2A2 +2*2*4 + 2*2)

Neutrons: 22*(2A2 + 2*2*4 + 2*2 +0.1)

Sharing: 41*1.1375731(27)

5.2. Ruthenium

A Ruthenium-104 (e.g. [114, 115, 116]) nucleus has 44 protons and 60 neutrons. It is a stable symmetrical (except the base square) nucleus.

The Structure for 104Ruthenium:

Base: Proton 4*4 + Neutron 3*3 +1

Second Layer: Proton 2*3*3 + Neutron 2*12

Third Layer: Proton 2*2*2 + Neutron 2*3*3

Fourth Layer: Proton 2*1 + Neutron 2*2*2

Ruthenium Isotopes Forth Layer

102Ruthenium: Proton 2*1 + Neutron (2+4)

101Ruthenium: Proton 2*1 + Neutron (2+3)

100Ruthenium: Proton 2*1 + Neutron (2+2)

99Ruthenium: Proton 2*1 + Neutron (2+1)

98Ruthenium: Proton 2*1 + Neutron (1+1)

96Ruthenium: Proton 2*1

5.3. Samarium

Atomic number: 62

The Structure for 144Samarium:

Base: Proton 4*4 + Neutron (3*3 + 8 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*16

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*2*2

Fifth Layer: Proton 2*1+ Neutron 2+2

The Structure for 150Samarium:

Base: Proton 4*4 + Neutron (3*3 + 12 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*16

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*2*2

Fifth Layer: Proton 2*1+ Neutron 2+2

The Structure for 152Samarium:

Base: Proton 4*4 + Neutron (3*3 + 12 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*16

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*2*2

Fifth Layer: Proton 2*1+ Neutron 3+3

The Structure for 154Samarium:

Base: Proton 4*4 + Neutron (3*3 + 12 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*16

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*2*2

Fifth Layer: Proton 2*1+ Neutron 4+4

5.4. Ytterbium

Atomic number: 70

The Structure for 172Ytterbium:

Base: Proton 4*4 + Neutron (3*3 + 12 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*16

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*2*2

Fifth Layer: Proton 2*2*2+ Neutron 2*3*3

Sixth Layer: Proton 2*1+ Neutron 2*2

5.5. Thulium

Atomic number: 69

The Structure for 169Thulium:

5*5+2*4*4+2*5 + 2

Base: Proton 5*5 + Neutron (4*4)

Second Layer: Proton 2*4*4+ Neutron 2*5*5

Third Layer: Proton 2*5+ Neutron 2*4*4

Fourth Layer: Proton 2*1+ Neutron 2*1

At fourth layer, the neutron is at the center to sit on top of the proton at the center of the third layer. There should be one proton surround the central neutron.

5.6. Lead

Atomic number: 82

The Structure for 208Lead:

Base: Proton 5*5-1 + Neutron (4*4+2)

Second Layer: Proton 2*4*4+ Neutron 2*5*5

Third Layer: Proton 2*(3*3 -1)+ Neutron 2*(4*4)

Fourth Layer: Proton 2*(2*2)+ Neutron 2*(3*3)

Fifth Layer: Proton 2*1+ Neutron 2*(2*2)

The Structure for 207Lead:

Base: Proton 5*5-1 + Neutron (4*4+2)

Second Layer: Proton 2*4*4+ Neutron 2*5*5

Third Layer: Proton 2*(3*3-1)+ Neutron 2*(4*4)

Fourth Layer: Proton 2*(2*2)+ Neutron 2*(3*3)

Fifth Layer: Proton 2*1+ Neutron 3 + 4

The Structure for 206Lead:

Base: Proton 5*5-1 + Neutron (4*4+2)

Second Layer: Proton 2*4*4+ Neutron 2*5*5

Third Layer: Proton 2*(3*3-1)+ Neutron 2*(4*4)

Fourth Layer: Proton 2*(2*2)+ Neutron 2*(3*3)

Fifth Layer: Proton 2*1+ Neutron 3 + 3

5.7. Uranium

Atomic number 92

The Structure for 238Uranium (e.g. [117, 118]):

Base: Proton 6*6 + Neutron (7*7+1)

Second Layer: Proton 2*5*5 + Neutron 2*(6*6 )

Third Layer: Proton 2*2+ Neutron 2 *(3*3 +2)

Fourth Layer: Neutron 2*2

The Structure for 236Uranium:

Base: Proton 6*6 + Neutron (7*7+1)

Second Layer: Proton 2*5*5 + Neutron 2*(6*6)

Third Layer: Proton 2*2+ Neutron 2 *(3*3 +2)

Fourth Layer: Neutron 2*1

The Structure for 235Uranium:

Base: Proton 6*6 + Neutron (7*7+1)

Second Layer: Proton 2*5*5+ Neutron 2*(6*6 )

Third Layer: Proton 2*2+ Neutron 2 *(3*3 +2)

Fourth Layer: Neutron 1

The Structure for 234Uranium:

Base: Proton 6*6 + Neutron (7*7+1)

Second Layer: Proton 2*5*5 + Neutron 2*(6*6 )

Third Layer: Proton 2*2+ Neutron 2 *(3*3 +2)

The Structure for 233Uranium:

Base: Proton 6*6 + Neutron (7*7)

Second Layer: Proton 2*5*5 + Neutron 2*(6*6)

Third Layer: Proton 2*2+ Neutron 2*(3*3 +2)

6. Unstable Nuclei

6.1. Technetium

Atomic number 43

Technetium (e.g. [37-53][37]) has no stable isotopes. The reason is that its proton pile structure is not symmetrical. The proton pile structure is:

4*4 + 2*3*3+2*2*2+1

There are two fourth layers, one on each side. Only one proton available for two layers. The unbalanced proton distribution is source of instabilities.

Many elements’ proton piles are not symmetrical. Niobium has the following proton pile:

4*4 + 2*3*3+(4+3)

The imbalance of the third layer is: 4 vs. 3 as compared to Technetium’s 1 vs. 0 at fourth layer.

The Structure for 99Technetium:

Base: Proton 4*4 + Neutron 3*3 +1

Second Layer: Proton 2*3*3 + Neutron 2*12

Third Layer: Proton 2*2*2 + Neutron 2*3*3

Fourth Layer: Proton 1 + Neutron 2*2

During decaying process, only fourth layer changes to:

Proton 1 + Neutron 2 and Proton 1 + Neutron 1

The Structure for 99Technetium:

Base: Proton 4*4 + Neutron 3*3 +1

Second Layer: Proton 2*3*3 + Neutron 2*12

Third Layer: Proton 2*2*2 + Neutron 2*3*3

Fourth Layer: Proton 1 + Neutron 2*2

During decaying process, its fourth layer changes to:

Proton 1 + Neutron 2 and Proton 1 + Neutron 1

The Structure for 98Technetium:

Base: Proton 4*4 + Neutron 3*3 +1

Second Layer: Proton 2*3*3 + Neutron 2*12

Third Layer: Proton 2*2*2 + Neutron 2*3*3

Fourth Layer: Proton 1 + Neutron 2+1

During decaying process, its fourth layer changes to:

Proton 1 + Neutron 1 and Proton 1 + Neutron 1

The Structure for 97Technetium:

Base: Proton 4*4 + Neutron 3*3 +1

Second Layer: Proton 2*3*3 + Neutron 2*12

Third Layer: Proton 2*2*2 + Neutron 2*3*3

Fourth Layer: Proton 1 + Neutron 1+1

During decaying process, its fourth layer changes to:

Neutron 1 and Neutron 2

6.2. Promethium

Atomic number 61

Promethium (e.g. [129, 130, 131, 132, 133]) has no stable isotopes. The reason is same as Technetium. The proton pile structure is:

4*4 + 2*3*3+2*2*2+2*3*3+1

There are a few relatively stable isotopes:

The Structure for 145Promethium:

Base: Proton 4*4 + Neutron (3*3 + 1)

Second Layer: Proton 2*3*3+ Neutron 2*12

Third Layer: Proton 2*2*2+ Neutron 2*3*3

Fourth Layer: Proton 2*3*3+ Neutron 2*12

Fifth Layer: Proton 1+ Neutron 4+4

7. Conclusions

1. The structures of nuclei are mainly the result of octahedron shaped protons and neutrons piling. The protons are symmetrical, while the neutrons are paired and symmetrical after meeting the pairing requirements.

2. The piling process starts from the base layer. Protons determine the ultimate configuration of the piling.

3. Piled neutrons and protons keep the 2A2 structure. When atomic number is greater than two, 2*3*5 + 2*3 will be changed to 2*2*4 + 2*2 structure, due to charged waves that have to resonate with the charge octahedron face count eight.

4. As atomic number increases, the mass difference between neutron and proton decreases. But their roles are significantly different.

5. Symmetrical piling is more stable as compared to non-symmetrical ones.

References

[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
In article      
 
[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
In article      
 
[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. doi: 10.11648/j.ajmp.20130206.14.
In article      
 
[4]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
In article      
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
In article      
 
[6]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170.
In article      
 
[7]  S.R. Beane, P.F.Bedaque,K. Orginos, M.J. Savage, Phys. Rev. Lett. 97 (2006) 012001, hep-lat/0602010.
In article      CrossRef
 
[8]  N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).
In article      CrossRef
 
[9]  Noriyoshi Ishii, PoS LAT2009:019, 2009.
In article      
 
[10]  T. Yamazaki, Y. Kuramashi, A. Ukawa, Phys. Rev. D81:111504, 2010, arXiv: 0912.1383 [hep-lat].
In article      CrossRef
 
[11]  H.M. Muller, S.E. Koonin, R. Seki, U. van Kolck, Phys. Rev. C61, 044320 (2000).
In article      CrossRef
 
[12]  D. Lee, B. Borasoy, Th Schaefer, Phys. Rev. C 70, 014007 (2004).
In article      CrossRef
 
[13]  E. Epelbaum, H. Krebs, D. Lee, U. Meissner, Eur. Phys. J. A45, 335-352, 2010.
In article      CrossRef
 
[14]  D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), arXiv: 0804.3501 [nucl-th].
In article      CrossRef
 
[15]  Yukawa, Proc. Math. Soc. Jap 17 (1935) 48.
In article      
 
[16]  V.G. Stoks et al, Phys. Rev. C49 (1994) 2950.
In article      CrossRef
 
[17]  R.B. Wiringa et al, Phys. Rev. C51 (1995) 38.
In article      CrossRef
 
[18]  R. Machleidt, Phys. Rev. C63 (2001) 0240041.
In article      
 
[19]  H. Kamada et al, Phys. Rev. C64 (2001) 044001, S. Pieper, Nucl. Phys. A751 (2005) 516.
In article      CrossRef
 
[20]  S. Weinberg, Nucl. Phys. B363 (1991) 3.
In article      CrossRef
 
[21]  C. Ordonez et al, Phys. Rev. C 53 (1996) 2086.
In article      CrossRef
 
[22]  E. Epelbaum, W. Glockle, U.G. Meissner, Nucl. Phys. A671 (2000) 295. 14.
In article      CrossRef
 
[23]  I. Montvay and G. Munster, Quantum Fields on a Lattice, Cambridge Univ. Press (1994).
In article      CrossRef
 
[24]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Nucl. Phys. B Proc. Suppl. 164 (2007) 252.
In article      CrossRef
 
[25]  Y. Saad Iterative method for sparse linear systemManchester University Press (2000).
In article      
 
[26]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Eur. Phys. J A31, 777 (2007); hep-lat/0610084.
In article      CrossRef
 
[27]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Nucl. Phys. A 790 (2007) 410; hep-lat/0610086.
In article      CrossRef
 
[28]  T. Nieuwenhuis, J.A. Tjon, Phys. Rev. Lett. 77 (1996) 814.
In article      CrossRef
 
[29]  J. Polonyi, J. Shigemitsu, Phys.Rev. D38 (1988) 3231; I. Lee, J. Shigemitsu and R.E. Shrock, Nucl. Phys. B330 (1990) 225; I. Lee, J. Shigemitsu and R.E. Shrock, Nucl. Phys. B334 (1990) 265.
In article      
 
[30]  P. Gerhold, K, Jansen, JHEP 0710:001, 2007, hep-lat 0707.3849.
In article      
 
[31]  P. Gerhold, K. Jansen, JHEP 1004:094, 2010, [hep-lat] 1002.4336.
In article      
 
[32]  von Weizsäcker, C. F. (1935). “Zur Theorie der Kernmassen”. Zeitschrift für Physik (in German) 96 (7-8): 431-458.
In article      CrossRef
 
[33]  Bailey, D. “Semi-empirical Nuclear Mass Formula”. PHY357: Strings & Binding Energy. University of Toronto. Retrieved 2011-03-31.
In article      
 
[34]  Krane, K. (1988). Introductory Nuclear Physics. John Wiley & Sons. p. 68.
In article      
 
[35]  Wapstra, A. H. (1958). “Atomic Masses of Nuclides”. External Properties of Atomic Nuclei. Springer. pp. 1-37.
In article      CrossRef
 
[36]  Rohlf, J. W. (1994). Modern Physics from a to Z0. John Wiley & Sons.
In article      
 
[37]  “Technetium: technetium(I) fluoride compound data”. OpenMOPAC.net. Retrieved 2007-12-10.
In article      
 
[38]  Jonge, F. A. A.; Pauwels, EK (1996). “Technetium, the missing element”. European Journal of Nuclear Medicine 23 (3): 336-44.
In article      CrossRef
 
[39]  Holden, N. E. “History of the Origin of the Chemical Elements and Their Discoverers”. Brookhaven National Laboratory. Retrieved 2009-05-05.
In article      
 
[40]  Yoshihara, H. K. (2004). “Discovery of a new element 'nipponium': re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa”. Atomic spectroscopy (Spectrochim. Acta, Part B) 59 (8): 1305-1310.
In article      CrossRef
 
[41]  van der Krogt, P. “Elentymolgy and Elements Multidict, “Technetium”“. Retrieved 2009-05-05.
In article      
 
[42]  Emsley 2001, p. 423.
In article      
 
[43]  Armstrong, J. T. (2003). “Technetium”. Chemical & Engineering News. doi:10.1021/cen-v081n036.p110. Retrieved 2009-11-11.
In article      CrossRef
 
[44]  Nies, K. A. (2001). “Ida Tacke and the warfare behind the discovery of fission”. Retrieved 2009-05-05.
In article      
 
[45]  Weeks, M. E. (1933). “The discovery of the elements. XX. Recently discovered elements”. Journal of Chemical Education 10 (3): 161-170.
In article      CrossRef
 
[46]  Zingales, R. (2005). “From Masurium to Trinacrium: The Troubled Story of Element 43”. Journal of Chemical Education 82 (2): 221-227.
In article      CrossRef
 
[47]  Heiserman 1992, p. 164.
In article      
 
[48]  Segrè, Emilio (1993). A Mind Always in Motion: the Autobiography of Emilio Segrè. Berkeley, California: University of California Press. pp. 115-118.
In article      
 
[49]  Perrier, C.; Segrè, E. (1947). “Technetium: The Element of Atomic Number 43”. Nature 159 (4027): 24.
In article      CrossRef
 
[50]  Emsley, J. (2001). Nature's Building Blocks: An A-Z Guide to the Elements. New York: Oxford University Press. pp. 422-425.
In article      
 
[51]  “Chapter 1.2: Early Days at the Berkeley Radiation Laboratory”. The transuranium people: The inside story. University of California, Berkeley & Lawrence Berkeley National Laboratory. 2000. p. 15.
In article      
 
[52]  Merrill, P. W. (1952). “Technetium in the stars”. Science 115 (2992): 479-89 [484].
In article      
 
[53]  Dan O'Leary “The deeds to deuterium” Nature Chemistry 4, 236 (2012). doi:10.1038/nchem.1273. “Science: Deuterium v. Diplogen”. Time. 19 February 1934.
In article      CrossRef
 
[54]  Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; De Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A. et al. (2011). “Ocean-like water in the Jupiter-family comet 103P/Hartley 2”. Nature 478 (7368): 218-220.
In article      CrossRef
 
[55]  Hersant, Franck; Gautier, Daniel; Hure, Jean-Marc (2001). “A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets”. The Astrophysical Journal 554: 391.
In article      CrossRef
 
[56]  Nomenclature of Inorganic Chemistry. Chemical Nomenclature and Structure Representation Division, IUPAC. Retrieved 2007-10-03.
In article      
 
[57]  Hébrard, G.; Péquignot, D.; Vidal-Madjar, A.; Walsh, J. R.; Ferlet, R. (7 Feb 2000), Detection of deuterium Balmer lines in the Orion Nebula
In article      
 
[58]  Weiss, Achim. “Equilibrium and change: The physics behind Big Bang Nucleosynthesis”. Einstein Online. Retrieved 2007-02-24.
In article      
 
[59]  IUPAC Commission on Nomenclature of Inorganic Chemistry (2001). “Names for Muonium and Hydrogen Atoms and their Ions” (PDF). Pure and Applied Chemistry 73 (2): 377-380.
In article      CrossRef
 
[60]  “Cosmic Detectives”. The European Space Agency (ESA). 2 April 2013. Retrieved 2013-04-15.
In article      
 
[61]  Lucas, L. L. and Unterweger, M. P. (2000). “Comprehensive Review and Critical Evaluation of the Half-Life of Tritium”. Journal of Research of the National Institute of Standards and Technology 105 (4): 541.
In article      CrossRef
 
[62]  Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
In article      
 
[63]  Zerriffi, Hisham (January 1996). “Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium”. Institute for Energy and Environmental Research. Retrieved 2010-09-15.
In article      
 
[64]  Jones, Greg (2008). “Tritium Issues in Commercial Pressurized Water Reactors”. Fusion Science and Technology 54 (2): 329-332.
In article      
 
[65]  ublette, Carey (2006-05-17). “Nuclear Weapons FAQ Section 12.0 Useful Tables”. Nuclear Weapons Archive. Retrieved 2010-09-19.
In article      
 
[66]  Whitlock, Jeremy. “Section D: Safety and Liability – How does Ontario Power Generation manage tritium production in its CANDU moderators?” Canadian Nuclear FAQ. Retrieved 2010-09-19.
In article      
 
[67]  “Tritium (Hydrogen-3) – Human Health Fact sheet”. Argonne National Laboratory. August 2005. Retrieved 2010-09-19.
In article      
 
[68]  Serot, O.; Wagemans, C.; Heyse, J. (2005). “New Results on Helium and Tritium Gas Production From Ternary Fission”. International conference on nuclear data for science and technology. AIP Conference Proceedings 769: 857-860.
In article      
 
[69]  Fa WenZhe & Jin YaQiu (December 2010). “Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite”.
In article      
 
[70]  Slyuta, E. N.; Abdrakhimov, A. M.; Galimov, E. M. (March 12-16, 2007). “The Estimation of Helium-3 Probable Reserves in Lunar Regolith”. 38th Lunar and Planetary Science Conference. p. 2175.
In article      
 
[71]  Cocks, F. H. (2010). “3He in permanently shadowed lunar polar surfaces”. Icarus 206 (2): 778-779.
In article      CrossRef
 
[72]  Oliphant, M. L. E.; Harteck, P.; Rutherford, E. (1934). “Transmutation Effects Observed with Heavy Hydrogen”. Proceedings of the Royal Society A 144 (853): 692-703.
In article      CrossRef
 
[73]  “Lawrence and His Laboratory: Episode: A Productive Error”. Newsmagazine Publication. 1981. Retrieved 2009-09-01.
In article      
 
[74]  Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (1972). “Evidence for a New Phase of Solid He3”. Physical Review Letters 28 (14): 885-888.
In article      CrossRef
 
[75]  Osheroff, D. D.; Gully, W. J.; Richardson, R. C.; Lee, D. M. (1972). “New Magnetic Phenomena in Liquid He3 below 3 mK”. Physical Review Letters 29 (14): 920-923.
In article      CrossRef
 
[76]  Leggett, A. J. (1972). “Interpretation of Recent Results on He3 below 3 mK: A New Liquid Phase?”. Physical Review Letters 29 (18): 1227-1230.
In article      CrossRef
 
[77]  Leawoods, Jason C.; Yablonskiy, Dmitriy A.; Saam, Brian; Gierada, David S.; Conradi, Mark S. (2001). “Hyperpolarized 3He Gas Production and MR Imaging of the Lung”. Concepts in Magnetic Resonance 13: 277-293.
In article      CrossRef
 
[78]  Simpson, J.A.; Weiner, E.S.C. (1989). “Hydrogen”. Oxford English Dictionary 7 (2nd ed.). Clarendon Press.
In article      
 
[79]  “Hydrogen”. Van Nostrand's Encyclopedia of Chemistry. Wylie-Interscience. 2005. pp. 797-799.
In article      
 
[80]  Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 183-191.
In article      
 
[81]  Stwertka, Albert (1996). A Guide to the Elements. Oxford University Press. pp. 16-21.
In article      
 
[82]  Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. p. 240.
In article      
 
[83]  “Magnetic susceptibility of the elements and inorganic compounds”. CRC Handbook of Chemistry and Physics (81st ed.). CRC Press.
In article      
 
[84]  Palmer, D. (13 September 1997). “Hydrogen in the Universe”. NASA. Retrieved 2008-02-05.
In article      
 
[85]  Presenter: Professor Jim Al-Khalili (2010-01-21). “Discovering the Elements”. Chemistry: A Volatile History. 25:40 minutes in. BBC. BBC Four.
In article      
 
[86]  “Hydrogen Basics — Production”. Florida Solar Energy Center. 2007. Retrieved 2008-02-05.
In article      
 
[87]  Rogers, H.C. (1999). “Hydrogen Embrittlement of Metals”. Science 159 (3819): 1057-1064.
In article      CrossRef
 
[88]  Christensen, C.H.; Nørskov, J.K.; Johannessen, T. (9 July 2005). “Making society independent of fossil fuels — Danish researchers reveal new technology”. Technical University of Denmark. Retrieved 2008-03-28. [dead link].
In article      
 
[89]  “Dihydrogen”. O=CHem Directory. University of Southern Maine. Retrieved 2009-04-06.
In article      
 
[90]  Carcassi, M.N.; Fineschi, F. (2005). “Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment”. Energy 30 (8): 1439-1451.
In article      CrossRef
 
[91]  Committee on Alternatives and Strategies for Future Hydrogen Production and Use, US National Research Council, US National Academy of Engineering (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies Press. p. 240.
In article      
 
[92]  Patnaik, P (2007). A comprehensive guide to the hazardous properties of chemical substances. Wiley-Interscience. p. 402.
In article      CrossRef
 
[93]  Clayton, D.D. (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press.
In article      
 
[94]  Millar, Tom (December 10, 2003). “Lecture 7, Emission Lines — Examples”. PH-3009 (P507/P706/M324) Interstellar Physics. University of Manchester. Retrieved 2008-02-05.
In article      
 
[95]  Stern, David P. (2005-05-16). “The Atomic Nucleus and Bohr's Early Model of the Atom”. NASA Goddard Space Flight Center (mirror). Retrieved 2007-12-20.
In article      
 
[96]  “Beryllium: Beryllium (I) Hydride compound data”. bernath.uwaterloo.ca. Retrieved 2007-12-10.
In article      
 
[97]  Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 14.48.
In article      
 
[98]  Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
In article      
 
[99]  Puchta, Ralph (2011). “A brighter beryllium”. Nature Chemistry 3 (5): 416.
In article      CrossRef
 
[100]  Behrens, V. (2003). “11 Beryllium”. In Beiss, P. Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials 2A1. Berlin: Springer. pp. 1-11.
In article      
 
[101]  Hausner, Henry H (1965). “Nuclear Properties”. Beryllium its Metallurgy and Properties. University of California Press. p. 239.
In article      
 
[102]  Ekspong, G. (1992). Physics: 1981–1990. World Scientific. pp. 172 ff.
In article      
 
[103]  Emsley 2001, p. 56.
In article      
 
[104]  “Beryllium: Isotopes and Hydrology”. University of Arizona, Tucson. Retrieved 10 April 2011.
In article      
 
[105]  Whitehead, N; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, Rg; Zondervan, A (Feb 2008). “A preliminary study on the use of (10)Be in forensic radioecology of nuclear explosion sites”. Journal of environmental radioactivity 99 (2): 260-70.
In article      CrossRef
 
[106]  Boyd, R. N.; Kajino, T. (1989). “Can Be-9 provide a test of cosmological theories?”. The Astrophysical Journal 336: L55.
In article      CrossRef
 
[107]  Dye, J. L. (1979). “Compounds of Alkali Metal Anions”. Angewandte Chemie International Edition 18 (8): 587-598.
In article      CrossRef
 
[108]  James, A. M.; Lord, M. P. (1992). Macmillan's chemical and physical data. London: Macmillan.
In article      
 
[109]  Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). “Potassium”. Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter.
In article      
 
[110]  Lincoln, S. F.; Richens, D. T. and Sykes, A. G. “Metal Aqua Ions” in J. A. McCleverty and T. J. Meyer (eds.) Comprehensive Coordination Chemistry II, Vol. 1, pp. 515-555.
In article      
 
[111]  Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A.H. (2003). “The NUBASE Evaluation of Nuclear and Decay Properties”. Nuclear Physics A (Atomic Mass Data Center) 729: 3-128.
In article      
 
[112]  Bowen, Robert; Attendorn, H. G. (1988). “Theory and Assumptions in Potassium–Argon Dating”. Isotopes in the Earth Sciences. Springer. pp. 203-208.
In article      CrossRef
 
[113]  “Ruthenium: ruthenium(I) fluoride compound data”. OpenMOPAC.net. Retrieved 2007-12-10.
In article      
 
[114]  Emsley, J. (2003). “Ruthenium”. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 368-370.
In article      
 
[115]  Harris, Donald C.; Cabri, L. J. (1973). “The nomenclature of the natural alloys of osmium, iridium and ruthenium based on new compositional data of alloys from world-wide occurrences”. The Canadian Mineralogist 12 (2): 104-112.
In article      
 
[116]  “WWW Table of Radioactive Isotopes”. Lawrence Berkeley National Laboratory, Berkeley, US.
In article      
 
[117]  “U.S. to pump money into nuke stockpile, increase security,” RIA Novosti 18 February 2010.
In article      
 
[118]  “Uranium”. The McGraw-Hill Science and Technology Encyclopedia (5th ed.). The McGraw-Hill Companies, Inc.
In article      
 
[119]  Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press.
In article      
 
[120]  “uranium”. Columbia Electronic Encyclopedia (6th ed.). Columbia University Press.
In article      
 
[121]  “uranium”. Encyclopedia of Espionage, Intelligence, and Security. The Gale Group, Inc.
In article      
 
[122]  Rollett, A. D. (2008). Applications of Texture Analysis. John Wiley and Sons. p. 108.
In article      CrossRef
 
[123]  Emsley 2001, p. 480.
In article      
 
[124]  “Nuclear Weapon Design”. Federation of American Scientists. 1998. Retrieved 19 February 2007.
In article      
 
[125]  “Dial R for radioactive – 12 July 1997 – New Scientist”. Newscientist.com. Retrieved 12 September 2008.
In article      
 
[126]  “Uranium Containing Dentures (ca. 1960s, 1970s)”. Health Physics Historical Instrumentation Museum Collection. Oak Ridge Associated Universities. 1999. Retrieved 2013-10-09.
In article      
 
[127]  “Oklo: Natural Nuclear Reactors”. Office of Civilian Radioactive Waste Management. Archived from the original on 3 June 2004. Retrieved 28 June 2006.
In article      
 
[128]  Pallmer, P.G.; Chikalla, T.D. (1971). “The crystal structure of promethium”. Journal of the Less Common Metals 24 (3): 233.
In article      CrossRef
 
[129]  Gschneidner, K.A., Jr. (2005). “Physical Properties of the rare earth metals”. In Lide, D. R. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press.
In article      
 
[130]  Chikalla, T. D.; McNeilly, C. E.; Roberts, F. P. (1972). “Polymorphic Modifications of Pm2O3”. Journal of the American Ceramic Society 55 (8): 428.
In article      CrossRef
 
[131]  Cotton, Simon (2006). Lanthanide And Actinide Chemistry. John Wiley & Sons. p. 117.
In article      CrossRef
 
[132]  G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon (2003). “The NUBASE evaluation of nuclear and decay properties”. Nuclear Physics A 729 (1): 3-128.
In article      CrossRef
 
[133]  Hammond, C. R. (2011). “Prometium in “The Elements”“. In Haynes, William M. CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.28.
In article      
 
  • CiteULikeCiteULike
  • Digg ThisDigg
  • MendeleyMendeley
  • RedditReddit
  • Google+Google+
  • StumbleUponStumbleUpon
  • Add to DeliciousDelicious
  • FacebookFacebook
  • TwitterTwitter
  • LinkedInLinkedIn