Unified Field Theory and the Hierarchical Universe

Zhiliang Cao, Henry Gu Cao

  Open Access OPEN ACCESS  Peer Reviewed PEER-REVIEWED

Unified Field Theory and the Hierarchical Universe

Zhiliang Cao1, 2,, Henry Gu Cao3

1Wayne State University, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Deerfield High School, Deerfield

Abstract

Everything from the smallest particle to the grand universe is constructed by Torque Grids. The grand structure of the universe is made up of infinite hierarchical Torque Grids; this theory falsifies Big Bang Theory (BBT) and Black Hole Theory. A Torque Grid is 10-25 times smaller than an atom, and our universal Torque Grid size is 4.98 * 1026 m. The Universe is timeless. The configuration of Spiral Arm Galaxy can also be explained by Unified Field Theory.

At a glance: Figures

Cite this article:

  • Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and the Hierarchical Universe." International Journal of Physics 1.6 (2013): 162-170.
  • Cao, Z. , & Cao, H. G. (2013). Unified Field Theory and the Hierarchical Universe. International Journal of Physics, 1(6), 162-170.
  • Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and the Hierarchical Universe." International Journal of Physics 1, no. 6 (2013): 162-170.

Import into BibTeX Import into EndNote Import into RefMan Import into RefWorks

1. Introduction

Unified Field Theory (e.g. [1, 2, 3, 4, 5]) will be an important theory in Astronomy.

BBT is repudiated by the discovery of Huge Large Quasar Group (e.g. [6-16][6]) (e.g. Figure 1). The “Non-scattering photon electron interaction” (e.g. [4]) will provide additional support for falsifying BBT (e.g. [17-108][17]).

This paper discusses the astronomic issues, such as the grand structure of the universe, Black Holes (e.g. [109-207][109]), galactic rotational curve (e.g. [207-232][207]), basis for BBT, and Thermal Dynamic Theory (e.g. [233-245][233]) in Astronomy.

2. Controversial BBT

2.1. Huge-LQG Contradicts BBT

The cosmological principle implies that at sufficiently large scales, the universe is approximately homogeneous.

The grand structure of Huge-LQG is non-homogeneous (e.g. [6]).

2.2. Remote Galaxies are Not Far Apart

Another important basis for the Big Bang is that remote galaxies are far apart.

Gravity lensing (e.g. Figure 2) makes some galaxies clearer, but it makes other Galaxies invisible.

For a remote galaxy, the possibility of visibility from earth is inversely proportional to the distance from the earth:

A/L

Where A is a constant, and L is distance.

The more remote galaxies are, the less likely they are to be seen. The distribution of remote galaxies is same as nearby galaxies, but visible remote galaxies are further apart.

In Huge-LQG, galaxies are not far apart. It supports the previous optical illusion claim and effectively falsifies an important BBT claim that remote galaxies are far apart.

2.3. Las Campanas Redshift Survey

Las Campanas Redshift Survey (e.g. Figure 3) uses photon’s redshift as means to measure the distance, moving speeds, and distribution of the galaxies. It concludes that the universe has large-scale homogeneity.

The optical illusion leads to the wrong large-scale homogeneity conclusion.

The redshift is mainly the result of non-scattering photon electron interactions(e.g. [4]). Therefore, redshift can not be used to explain the movements of the remote stars since electron photon interaction causes a bigger redshift than Doppler effects.

2.4. Hubble Constant

Hubble Constant (e.g. Figure 4) uses redshift as means to derive the relationship between the distance and velocity. The velocity of the remote galaxies can not be measured accurately due to possible non-scattering photon electron interaction (e.g. [4]). The distance and speed may not be related to redshift.

3. Structure of Universe

3.1. Black Hole

Can a gravity field of Black Hole (e.g. Figure 5) trap a photon? In order for gravity to trap a photon, the gravity force GMm/R2 is greater then the reactive centrifugal force mC2/R, or GMm/R2> mC2/R. It can be simplified to:

When mass m enters to gravity field of mass M at radius R, the escape energy GMm/R comes from the energy mC2 (e.g. [3]). According to the law of energy conservation, the GMm/R cannot be greater than the original mass, or (GMm/R)<mC2. Therefore, gravity cannot trap a photon; otherwise, it will contradict the law of energy conservation. Therefore,

(1)
3.2. Universal Grid

If the universe has a constant density d (9.22*10-27), then,

When GM/RC2 in (1) approximately equals to one:

At the radius of 2.49 * 1026 m, the universe reaches its gravitational limit.

This limit has a few meanings:

1. If the universe is limited, the above radius is the radius of the universe.

2. If the universe is not limited, then, the above radius is the half resonance wavelength of universe.

UFT predicts that the universe is infinite in size and the Universal Grid size is twice as big as the gravitational limit:

The universal Grid is a Grid in the higher Torque Grid hierarchy. A Grid in any hierarchy has same energy density in its own universe.

The universe has no visible boundary. There will be no difference between being of the border and being inside the Grid.

3.3. Energy-Time-Space

The energy density in the universe decides the universe’s Grid size. The Torque movement speed is the same in any Torque hierarchy for an undistorted Grid. Grid size defines unit for space and time. Therefore, energy, space and time are inseparable.

3.4. Hierarchy Ratio Constant

The Torque Grid size D times N is the universe Grid size. The universe Grid size times N is the Grid size of the next level Grid above the universe. For the same reason, the Torque Grid size divided by N is the size of Torque Grid one level lower than the Torque Grid. Based on the density of universe known today:

3.5. Possible Location of Our Universe

Our universe is most likely a Grid in the vacuum at the higher Torque Grid hierarchy.

The density of the universe is 9.22*10-27. At any Grid hierarchy, the energy density is the same. If a Grid is randomly picked, the possibility of not being in the vacuum is 9.22*10-27. This prediction is purely based on statistics.

4. Torque Grid Hierarchy

4.1. Hierarchical Diagram

Parent Grid is N (2.1788* 1060) times bigger than child Grid. Under Logarithmic scale, the hierarchy diagram for Torque Grid Hierarchy will be:

4.2. Twisting Directions

In the above hierarchy (e.g. Figure 6), R is right handed Torque, L is left handed Torque. Child Grid and parent Grid have different Torque (twisting) directions.

The nature of twisting motion decides parent and child direction.

Assume that child and parent have same twisting direction. As twisting motion creates a distortion from parent to child:

v is twisting speed.

Based on UFT (e.g. [5]), for n level hierarchy, the accumulated distortion is dn. Since n is unlimited, dn is diverging.

Therefore, child and parent should have different twisting motion to stay converged.

A simple analogy can explain the parent and child Torque relationship:

Figure 7. Parent and Child Grids Resemble Rope and Fibers

If you twist sewing string tight and fold it into half, the two folded half-string will twist together in opposite direction and form a new string twice as thick. A short rope can be created by repeating the above process.

The rope (e.g. Figure 7) helps us understand opposite twisting of parent and child Grids.

4.3. Characteristics of Neutrinos

The Torque hierarchy can be used to explain characteristics of neutrinos.

Neutrinos’ resonance size is less than or equals to 137th Grid size (e.g. [3]), different from photon which has single Grid resonance size. The movement of neutrino is based on the smaller Torque Grid one hierarchy lower than normal Torque Grid. The lower hierarchical Torque Grid has left twist motion. Internally, neutrinos twist left while photon twists right. It makes neutrinos and photon unable to interact with each other.

Four fundamental forces are based on resonance of same torque movements. Different forces have different resonance conditions.

UFT predicts that neutrinos can be scattered by particles.

5. Configuration of Galaxy

5.1. Galaxy Energy Distribution

The gravity field is the result of energy distortion on the grid. In our classical definition, force times distance is energy. The gravity for unit mass multiplied by the average distortion is the gravity field’s virtual energy.

When the unit mass with wavelength L is in a sphere with radius r, the average distortion s on the sphere is the total distortion divided by the area of the sphere.

D: Torque Grid size

Based on the Planck equation, for unit mass:

F is the total virtual gravitational force between the two objects with the same mass M:

Virtual Energy is defined as the amount of virtual force multiplied by the distortion value:

When two celestial objects with the same mass M are pulled part by dr, their energy increases. Each object shares half of the energy increment. When the energy increment equals to virtual energy change:

Simplify the above equation by defining a new constant g,

(2)

The solution of the differential equation is,

When M0 and r0 is relatively large, the above equation can be simplified to:

Or:

(3)

The above equation is based on assumption that the virtual energy equals to actual energy. Since the Torque distortion represents the space-time-energy change, therefore, the actual energy allocation resonances with virtual energy as follow:

P and Q are both non-zero positive integer.

Assume Q/P = K,

(4)
5.2. Rotation Curve

In Spiral Arm galaxy Figure 8, the rotational centrifugal force and gravity force are equal to:

(5)

In a Spiral Arm galaxy, the rotation speed is a constant.

Prediction:

The value of k needs to have proper resonance with gravity speed 131.5 km/s, where,

5.3. Limit of Thermal Dynamic Theory

Although gravity cannot trap a photon, a high density “dead” star or “Black Hole” can provide an extreme case to study entropy.

A particle with mass m moves toward the “Black Hole” with mass M and at radius R where GM/(RC2) is 0.99. If the particle reaches radius R without collision, 99% of its mass is transformed to kinetic energy. When the particle losses its speed, the kinetic energy can be transformed mainly to light, while the particle keeps 1% of original mass. The particle only has 1% of its mass while 99% of the mass are photons with low entropy. This result clearly contradicts the second law of Thermal Dynamics.

In the above case, the “Black Hole” annihilates 99% of the mass of the particles and releases energy as photons in a more primitive form. In another words, the energy is re-born.

The paradox is that the high speed (high temperature) object loses its speed (temperature) due to the second law of Thermal Dynamics (e.g. Figure 9): “The entropy of any isolated system not in thermal equilibrium almost always increases.” In the end, the lost kinetic energy is released as light with lowest entropy.

Based on the above analysis, it is concluded that the second law of Thermal Dynamics only applicable in a closed system where particle’s mass is not transformed to other energy form.

The stars may be continuously aging, but universe doesn’t, since the universe is neither getting younger nor older. The energy in the form of Torque Grids distortions movement from one place to the other and constantly transform. A star will die one day, but the universe is timeless.

6. Conclusions

1. The firmament of the universe is a Torque Grid with Left handed Torque.

2. The smallest unit in our universe is a Torque Grid which is a small universe that resembles to our universe.

3. The Torque Grid hierarchy is our universal hierarchical structure.

4. The Spiral Arm Galaxy structure is the result of energy and virtual energy resonance.

5. “Black Holes” can not trap photons.

6. Matter can be converted into electro-magnetic waves in “Black Holes” and released into space. This process makes the universe timeless.

References

[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
In article      
 
[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
In article      
 
[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
In article      
 
[4]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
In article      
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
In article      
 
[6]  Aron, Jacob. “Largest structure challenges Einstein's smooth cosmos”. New Scientist. Retrieved 14 January 2013.
In article      
 
[7]  “Astronomers discover the largest structure in the universe”. Royal astronomical society. Retrieved 2013-01-13.
In article      
 
[8]  Clowes, Roger; Harris; Raghunathan; Campusano; Soechting; Graham; Kathryn A. Harris, Srinivasan Raghunathan, Luis E. Campusano, Ilona K. Söchting and Matthew J. Graham (2012-01-11). “A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology”. Monthly notices of the royal astronomical society 1211 (4): 6256.
In article      
 
[9]  “The Largest Structure in Universe Discovered - Quasar Group 4 Billion Light-Years Wide Challenges Current Cosmology”. Retrieved 14 January 2013.
In article      
 
[10]  Prostak, Sergio (11 January 2013). “Universe's Largest Structure Discovered”. scinews.com. Retrieved 15 January 2013.
In article      
 
[11]  Yadav, Jaswant; J. S. Bagla and Nishikanta Khandai (25 February 2010). “Fractal dimension as a measure of the scale of homogeneity”. Monthly notices of the Royal Astronomical Society 405 (3): 2009-2015.
In article      
 
[12]  Hogg, D.W. et al., (May 2005) “Cosmic Homogeneity Demonstrated with Luminous Red Galaxies”. The Astrophysical Journal 624: 54-58.
In article      CrossRef
 
[13]  Scrimgeour, Morag I. et al., (May 2012) “The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity”. Monthly Notices of the Royal Astronomical Society 425 (1): 116-134.
In article      CrossRef
 
[14]  Nadathur, Seshadri, (July 2013) “Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity”. Monthly Notices of the Royal Astronomical Society in press.
In article      CrossRef
 
[15]  Gott, J. Richard, III et al. (May 2005). “A Map of the Universe”. The Astrophysical Journal 624 (2): 463-484.
In article      CrossRef
 
[16]  Gaite, Jose, Dominguez, Alvaro and Perez-Mercader, Juan (August 1999) “The fractal distribution of galaxies and the transition to homogeneity”. The Astrophysical Journal 522: L5-L8.
In article      CrossRef
 
[17]  Wollack, E.J. (10 December 2010). “Cosmology: The Study of the Universe”. Universe 101: Big Bang Theory. NASA. Archived from the original on 14 May 2011. Retrieved 27 April 2011. “The second section discusses the classic tests of the Big Bang theory that make it so compelling as the likely valid description of our universe.”
In article      
 
[18]  “Planck reveals an almost perfect universe”. Planck. ESA. 2013-03-21. Retrieved 2013-03-21.
In article      
 
[19]  Staff (21 March 2013). “Planck Reveals An Almost Perfect Universe”. ESA. Retrieved 21 March 2013.
In article      
 
[20]  Clavin, W.; Harrington, J.D. (21 March 2013). “Planck Brings Universe Into Sharp Focus”. NASA. Retrieved 21 March 2013.
In article      
 
[21]  Overbye, D. (21 March 2013). “An Infant Universe, Born Before We Knew”. New York Times. Retrieved 21 March 2013.
In article      
 
[22]  Boyle, A. (21 March 2013). “Planck probe's cosmic 'baby picture' revises universe's vital statistics”. NBC News. Retrieved 21 March 2013.
In article      
 
[23]  “How Old is the Universe?”. WMAP - Age of the Universe. NASA. 21 December 2012. Retrieved 2013-01-01.
In article      
 
[24]  Komatsu, E.; et al. (2009). “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation”. Astrophysical Journal Supplement 180 (2): 330.
In article      CrossRef
 
[25]  Menegoni, E.; et al. (2009). “New constraints on variations of the fine structure constant from CMB anisotropies”. Physical Review D 80 (8): 087302.
In article      CrossRef
 
[26]  “Origins: CERN: Ideas: The Big Bang”. The Exploratorium. 2000. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
In article      
 
[27]  Keohane, J. (8 November 1997). “Big Bang theory”. Ask an astrophysicist. GSFC/NASA. Archived from the original on 2 September 2010. Retrieved 3 September 2010.
In article      
 
[28]  Wright, E.L. (9 May 2009). “What is the evidence for the Big Bang?”. Frequently Asked Questions in Cosmology. UCLA, Division of Astronomy and Astrophysics. Retrieved 16 October 2009.
In article      
 
[29]  Gibson, C.H. (2001). “The First Turbulent Mixing and Combustion”. IUTAM Turbulent Mixing and Combustion.
In article      
 
[30]  Gibson, C.H. (2001). “Turbulence And Mixing In The Early Universe”.
In article      
 
[31]  Gibson, C.H. (2005). “The First Turbulent Combustion”.
In article      
 
[32]  Hubble, E. (1929). “A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae”. Proceedings of the of Sciences 15 (3): 168-73.
In article      CrossRefPubMed
 
[33]  Kragh, H. (1996). Cosmology and Controversy. Press. p. 318.
In article      
 
[34]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time. Press.
In article      CrossRef
 
[35]  Roos, M. (2008). “Expansion of the Universe - Standard Big Bang Model”. In Engvold, O.; Stabell, R.; Czerny, B. et al. Astronomy and Astrophysics. Encyclopedia of Life Support Systems. UNESCO. “This singularity is termed the Big Bang.”
In article      
 
[36]  Drees, W.B. (1990). Beyond the big bang: quantum cosmologies and God. Open Court Publishing. pp. 223-224.
In article      
 
[37]  Weinberg, S. (1993). The First Three Minutes: A Modern View Of The Origin Of The Universe. Basic Books. p. [page needed].
In article      
 
[38]  Bennett, C.L.; et al. (2013). “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results”.
In article      
 
[39]  Guth, A.H. (1998). The Inflationary Universe: Quest for a New Theory of Cosmic Origins. Vintage Books.
In article      
 
[40]  Schewe, P. (2005). “An of Quarks”. Physics News Update (American Institute of Physics) 728 (1).
In article      
 
[41]  Moskowitz, C. (25 September 2012). “Hubble Telescope Reveals Farthest View Into Universe Ever”. Space.com. Retrieved 26 September 2012.
In article      
 
[42]  Spergel, D.N.; et al. (2003). “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters”. Astrophysical Journal Supplement 148 (1): 175.
In article      CrossRef
 
[43]  Jarosik, N.; et al. (WMAP Collaboration) (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. NASA/GSFC. p. 39, Table 8. Retrieved 4 December 2010.
In article      
 
[44]  Peebles, P.J.E.; Ratra, B. (2003). “The Cosmological Constant and Dark Energy”. Reviews of Modern Physics 75 (2): 559-606.
In article      CrossRef
 
[45]  Ivanchik, A.V.; Potekhin, A.Y.; Varshalovich, D.A. (1999). “The Fine-Structure Constant: A New Observational Limit on Its Cosmological Variation and Some Theoretical Consequences”. Astronomy and Astrophysics 343: 459.
In article      
 
[46]  Goodman, J. (1995). “Geocentrism Reexamined”. Physical Review D 52 (4): 1821.
In article      CrossRefPubMed
 
[47]  “'Big bang' astronomer dies”. BBC News. 22 August 2001. Archived from the original on 8 December 2008. Retrieved 7 December 2008.
In article      
 
[48]  Mitton, S. (2005). Fred Hoyle: A Life in Science. Aurum Press. p. 127.
In article      
 
[49]  Slipher, V.M (1913). “The Radial Velocity of the Andromeda Nebula”. Observatory Bulletin 1: 56-57.
In article      
 
[50]  Slipher, V.M (1915). “Spectrographic Observations of Nebulae”. Popular Astronomy 23: 21-24.
In article      
 
[51]  Friedman, A. (1999). “On the Curvature of Space”. General Relativity and Gravitation 31 (12): 1991-2000.
In article      CrossRef
 
[52]  Lemaître, G. (1931). “A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae”. Monthly Notices of the Royal Astronomical Society 91: 483-490.
In article      
 
[53]  Lemaître, G. (1931). “The Evolution of the Universe: Discussion”. Nature 128 (3234): 699-701.
In article      CrossRef
 
[54]  Christianson, E. (1995). Edwin Hubble: Mariner of the Nebulae. Farrar, Straus and Giroux.
In article      
 
[55]  Kragh, H. (1996). Cosmology and Controversy. Press.
In article      
 
[56]  “People and Discoveries: Big Bang Theory”. A Science Odyssey. PBS. Retrieved 9 March 2012.
In article      
 
[57]  Eddington, A. (1931). “The End of the World: from the Standpoint of Mathematical Physics”. Nature 127 (3203): 447-453.
In article      CrossRef
 
[58]  Appolloni, S. (2011). ““Repugnant”, “Not Repugnant at All”: How the Respective Epistemic Attitudes of Georges Lemaitre and Sir Arthur Eddington Influenced How Each Approached the Idea of a Beginning of the Universe”. IBSU Scientific Journal 5 (1): 19-44.
In article      
 
[59]  Lemaître, G. (1931). “The Beginning of the World from the Point of View of Quantum Theory”. Nature 127 (3210): 706.
In article      CrossRef
 
[60]  Milne, E.A. (1935). Relativity, Gravitation and World Structure. Press.
In article      PubMed
 
[61]  Tolman, R.C. (1934). Relativity, Thermodynamics, and Cosmology. Clarendon Press.
In article      
 
[62]  Zwicky, F. (1929). “On the Red Shift of Spectral Lines through Interstellar Space”. Proceedings of the of Sciences 15 (10): 773-779.
In article      CrossRefPubMed
 
[63]  Hoyle, F. (1948). “A New Model for the Expanding Universe”. Monthly Notices of the Royal Astronomical Society 108: 372.
In article      
 
[64]  Alpher, R.A.; Bethe, H.; Gamow, G. (1948). “The Origin of Chemical Elements”. Physical Review 73 (7): 803.
In article      CrossRef
 
[65]  Alpher, R.A.; Herman, R. (1948). “Evolution of the Universe”. Nature 162 (4124): 774.
In article      CrossRef
 
[66]  Singh, S. (21 April 2007). “Big Bang”. SimonSingh.net. Archived from the original on 30 June 2007. Retrieved 28 May 2007.
In article      
 
[67]  Croswell, K. (1995). The Alchemy of the Heavens. Anchor Books. chapter 9.
In article      
 
[68]  Penzias, A.A.; Wilson, R.W. (1965). “A Measurement of Excess Antenna Temperature at 4080 Mc/s”. Astrophysical Journal 142: 419.
In article      CrossRef
 
[69]  Boggess, N.W.; et al. (1992). “The COBE : Its Design and Performance Two Years after the launch”. Astrophysical Journal 397: 420.
In article      CrossRef
 
[70]  Spergel, D.N.; et al. (2006). “Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology”. Astrophysical Journal Supplement 170 (2): 377.
In article      CrossRef
 
[71]  Krauss, L. (2012). A Universe From Nothing: Why there is Something Rather than Nothing. Free Press. p. 118.
In article      
 
[72]  Gladders, M.D.; et al. (2007). “Cosmological Constraints from the Red-Sequence Cluster Survey”. The Astrophysical Journal 655 (1): 128-134.
In article      CrossRef
 
[73]  The Four Pillars of the Standard Cosmology.
In article      
 
[74]  Sadoulet, B. (2010). “Direct Searches for Dark Matter”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
In article      
 
[75]  Cahn, R. (2010). “For a Comprehensive Space-Based Dark Energy Mission”. Astro2010: The Astronomy and Astrophysics Decadal Survey. National Academies Press. Retrieved 12 March 2012.
In article      
 
[76]  Srianand, R.; Petitjean, P.; Ledoux, C. (2000). “The microwave background temperature at the redshift of 2.33771”. Nature 408 (6815): 931-935. Lay summary - European Southern Observatory (December 2000).
In article      
 
[77]  Gannon, M. (21 December 2012). “New 'Baby Picture' of Universe Unveiled”. Space.com. Retrieved 21 December 2012.
In article      
 
[78]  Wright, E.L. (2004). “Theoretical Overview of Cosmic Microwave Background Anisotropy”. In W. L. Freedman. Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. Press. p. 291.
In article      
 
[79]  White, M. (1999). “Anisotropies in the CMB”. Proceedings of the Meeting, DPF 99. UCLA.
In article      
 
[80]  Steigman, G. (2005). “Primordial Nucleosynthesis: Successes And Challenges”. International Journal of Modern Physics E 15: 1-36.
In article      CrossRef
 
[81]  Bertschinger, E. (2001). “Cosmological Perturbation Theory and Structure Formation”.
In article      
 
[82]  Bertschinger, E. (1998). “Simulations of Structure Formation in the Universe”. Annual Review of Astronomy and Astrophysics 36 (1): 599-654.
In article      CrossRef
 
[83]  Fumagalli, M.; O'Meara, J.M.; Prochaska, J.X. (2011). “Detection of Pristine Gas Two Billion Years After the Big Bang”. Science 334 (6060): 1245-9.
In article      CrossRefPubMed
 
[84]  “Astronomers Find Clouds of Primordial Gas from the Early Universe, Just Moments After Big Bang”. Science Daily. 10 November 2011. Retrieved 13 November 2011.
In article      
 
[85]  Perley, D. (21 February 2005). “Determination of the Universe's Age, to”. of , Astronomy Department. Retrieved 27 January 2012.
In article      
 
[86]  Srianand, R.; Noterdaeme, P.; Ledoux, C.; Petitjean, P. (2008). “First detection of CO in a high-redshift damped Lyman-a system”. Astronomy and Astrophysics 482 (3): L39.
In article      CrossRef
 
[87]  Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L. (2011). “Constraints on the CMB temperature-redshift dependence from SZ and distance measurements”.
In article      
 
[88]  Belusevic, R. (2008). Relativity, Astrophysics and Cosmology. Wiley-VCH. p. 16.
In article      
 
[89]  Sakharov, A.D. (1967). “Violation of CP Invariance, C Asymmetry and Baryon Asymmetry of the Universe”. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pisma 5: 32. (Russian) (Translated in Journal of Experimental and Theoretical Physics Letters 5, 24 (1967).)
In article      
 
[90]  Keel, B. (October 2009). “Dark Matter”. Retrieved 24 July 2013.
In article      
 
[91]  , W. M.; et al. (2006). “Review of Particle Physics: Dark Matter”. Journal of Physics G 33 (1): 1-1232.
In article      CrossRef
 
[92]  Navabi, A.A.; Riazi, N. (2003). “Is the Age Problem Resolved?”. Journal of Astrophysics and Astronomy 24 (1-2): 3.
In article      CrossRef
 
[93]  Penrose, R. (1979). “Singularities and Time-Asymmetry”. In Hawking, S.W. (ed); , W. (ed). General Relativity: An Einstein Centenary Survey. Press. pp. 581-638.
In article      
 
[94]  Penrose, R. (1989). “Difficulties with Inflationary Cosmology”. In Fergus, E.J. (ed). Proceedings of the 14th Symposium on Relativistic Astrophysics. of Sciences. pp. 249-264.
In article      
 
[95]  Dicke, R.H.; Peebles, P.J.E. “The big bang cosmology—enigmas and nostrums”. In Hawking, S.W. (ed); , W. (ed). General Relativity: an Einstein centenary survey. Press. pp. 504-517.
In article      
 
[96]  , R.R; Kamionkowski, M.; Weinberg, N. N. (2003). “Phantom Energy and Cosmic Doomsday”. Physical Review Letters 91 (7): 071301.
In article      CrossRefPubMed
 
[97]  Hawking, S.W.; Ellis, G.F.R. (1973). The Large Scale Structure of Space-Time. (): Press.
In article      CrossRef
 
[98]  Hartle, J.H.; Hawking, S. (1983). “Wave Function of the Universe”. Physical Review D 28 (12): 2960.
In article      CrossRef
 
[99]  Langlois, D. (2002). “Brane Cosmology: An Introduction”. Progress of Theoretical Physics Supplement 148: 181-212.
In article      
 
[100]  Linde, A. (2002). “Inflationary Theory versus Ekpyrotic/Cyclic Scenario”.
In article      
 
[101]  Than, K. (2006). “Recycled Universe: Theory Could Solve Cosmic Mystery”. Space.com. Retrieved 3 July 2007.
In article      
 
[102]  Kennedy, B.K. (2007). “What Happened Before the Big Bang?”. Archived from the original on 4 July 2007. Retrieved 3 July 2007.
In article      
 
[103]  Linde, A. (1986). “Eternal Chaotic Inflation”. Modern Physics Letters A 1 (2): 81.
In article      CrossRef
 
[104]  Linde, A. (1986). “Eternally Existing Self-Reproducing Chaotic Inflationary Universe”. Physics Letters B 175 (4): 395-400.
In article      CrossRef
 
[105]  Harris, J.F. (2002). Analytic philosophy of religion. Springer. p. 128.
In article      CrossRefPubMed
 
[106]  Frame, T. (2009). Losing my religion. UNSW Press. pp. 137-141.
In article      
 
[107]  Harrison, P. (2010). The Companion to Science and Religion. Press. p. 9.
In article      CrossRefPubMed
 
[108]  Sagan, C. (1988). introduction to A Brief History of Time by Stephen Hawking. Bantam Books. pp. X. “... a universe with no edge in space, no beginning or end in time, and nothing for a Creator to do.”
In article      
 
[109]  Schutz, Bernard F. (2003). Gravity from the ground up. Press. p. 110.
In article      CrossRef
 
[110]  Davies, P. C. W. (1978). “Thermodynamics of Black Holes”. Reports on Progress in Physics 41 (8): 1313-1355.
In article      CrossRef
 
[111]  Michell, J. (1784). “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose”. Philosophical Transactions of the Royal Society 74 (0): 35-57.
In article      CrossRef
 
[112]  Gillispie, C. C. (2000). Pierre-Simon Laplace, 1749-1827: a life in exact science. paperbacks. Press. p. 175.
In article      
 
[113]  , W. (1989). “Dark stars: the evolution of an idea”. In Hawking, S. W.; , W. 300 Years of Gravitation. Press.
In article      
 
[114]  Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7: 189-196. and Schwarzschild, K. (1916). “Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 18: 424-434.
In article      
 
[115]  Droste, J. (1917). “On the field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field”. 19 (1): 197-215.
In article      
 
[116]  Kox, A. J. (1992). “General Relativity in the : 1915-1920”. In Eisenstaedt, J.; Kox, A. J. Studies in the history of general relativity. Birkhäuser. p. 41.
In article      
 
[117]  Venkataraman, G. (1992). Chandrasekhar and his limit. Universities Press. p. 89.
In article      
 
[118]  Detweiler, S. (1981). “Resource letter BH-1: Black holes”. American Journal of Physics 49 (5): 394-400.
In article      CrossRef
 
[119]  Harpaz, A. (1994). Stellar evolution. A K Peters. p. 105.
In article      
 
[120]  Oppenheimer, J. R.; Volkoff, G. M. (1939). “On Massive Neutron Cores”. Physical Review 55 (4): 374-381.
In article      CrossRef
 
[121]  Ruffini, R.; Wheeler, J. A. (1971). “Introducing the black hole”. Physics Today 24 (1): 30-41.
In article      CrossRef
 
[122]  Finkelstein, D. (1958). “Past-Future Asymmetry of the Gravitational Field of a Point Particle”. Physical Review 110 (4): 965-967.
In article      CrossRef
 
[123]  Kruskal, M. (1960). “Maximal Extension of Schwarzschild Metric”. Physical Review 119 (5): 1743.
In article      CrossRef
 
[124]  Hewish, A. et al. (1968). “Observation of a Rapidly Pulsating Radio Source”. Nature 217 (5130): 709-713.
In article      CrossRef
 
[125]  Pilkington, J. D. H. et al. (1968). “Observations of some further Pulsed Radio Sources”. Nature 218 (5137): 126-129.
In article      CrossRef
 
[126]  Hewish, A. (1970). “Pulsars”. Annual Review of Astronomy and Astrophysics 8 (1): 265-296.
In article      CrossRef
 
[127]  Newman, E. T. et al. (1965). “Metric of a Rotating, Charged Mass”. Journal of Mathematical Physics 6 (6): 918.
In article      CrossRef
 
[128]  , W. (1967). “Event Horizons in Static Vacuum Space-Times”. Physical Review 164 (5): 1776.
In article      CrossRef
 
[129]  Carter, B. (1971). “Axisymmetric Black Hole Has Only Two Degrees of Freedom”. Physical Review Letters 26 (6): 331.
In article      CrossRef
 
[130]  Carter, B. (1977). “The vacuum black hole uniqueness theorem and its conceivable generalisations”. Proceedings of the 1st Marcel Grossmann meeting on general relativity. pp. 243-254.
In article      
 
[131]  Robinson, D. (1975). “Uniqueness of the Kerr Black Hole”. Physical Review Letters 34 (14): 905.
In article      CrossRef
 
[132]  Heusler, M. (1998). “Stationary Black Holes: Uniqueness and Beyond”. Living Reviews in Relativity 1 (6). Archived from the original on 1999-02-03. Retrieved 2011-02-08.
In article      CrossRef
 
[133]  Penrose, R. (1965). “Gravitational Collapse and Space-Time Singularities”. Physical Review Letters 14 (3): 57.
In article      CrossRef
 
[134]  Ford, L. H. (2003). “The Classical Singularity Theorems and Their Quantum Loopholes”. International Journal of Theoretical Physics 42 (6): 1219.
In article      CrossRef
 
[135]  Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973). “The four laws of black hole mechanics”. Communications in Mathematical Physics 31 (2): 161-170.
In article      CrossRef
 
[136]  Hawking, S. W. (1974). “Black hole explosions?”. Nature 248 (5443): 30-31.
In article      CrossRef
 
[137]  Quinion, M. (26 April 2008). “Black Hole”. World Wide Words. Retrieved 2008-06-17.
In article      
 
[138]  Thorne, K. S.; Price, R. H. (1986). Black holes: the membrane paradigm. Press.
In article      
 
[139]  Anderson, Warren G. (1996). “The Black Hole Information Loss Problem”. Usenet Physics FAQ. Retrieved 2009-03-24.
In article      
 
[140]  Preskill, J. (1994-10-21). “Black holes and information: A crisis in quantum physics”. Caltech Theory Seminar.
In article      
 
[141]  Hawking & Ellis 1973, Appendix B.
In article      
 
[142]  Seeds, Michael A.; Backman, Dana E. (2007). Perspectives on Astronomy. Cengage Learning. p. 167.
In article      
 
[143]  Shapiro, S. L.; Teukolsky, S. A. (1983). Black holes, white dwarfs, and neutron stars: the physics of compact objects. John Wiley and Sons. p. 357.
In article      CrossRef
 
[144]  Wald, R. M. (1997). “Gravitational Collapse and Cosmic Censorship”.
In article      
 
[145]  Berger, B. K. (2002). “Numerical Approaches to Spacetime Singularities”. Living Reviews in Relativity 5: 1. Retrieved 2007-08-04.
In article      
 
[146]  McClintock, J. E.; Shafee, R.; Narayan, R.; Remillard, R. A.; Davis, S. W.; Li, L.-X. (2006). “The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105”. Astrophysical Journal 652 (1): 518-539.
In article      CrossRef
 
[147]  Lewis, G. F.; Kwan, J. (2007). “No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon”. Publications of the Astronomical Society of 24 (2): 46-52.
In article      CrossRef
 
[148]  Droz, S.; , W.; Morsink, S. M. (1996). “Black holes: the inside story”. Physics World 9 (1): 34-37.
In article      
 
[149]  Poisson, E.; , W. (1990). “Internal structure of black holes”. Physical Review D 41 (6): 1796.
In article      CrossRefPubMed
 
[150]  Wald 1984, p. 212.
In article      
 
[151]  Hamade, R. (1996). “Black Holes and Quantum Gravity”. Relativity and Cosmology. . Retrieved 2009-03-26.
In article      
 
[152]  Palmer, D. “Ask an Astrophysicist: Quantum Gravity and Black Holes”. NASA. Retrieved 2009-03-26.
In article      
 
[153]  Nitta, Daisuke; , Takeshi; Sugiyama, Naoshi (September 2011). “Shadows of colliding black holes”. Physical Review D 84 (6).
In article      CrossRef
 
[154]  Nemiroff, R. J. (1993). “Visual distortions near a neutron star and black hole”. American Journal of Physics 61 (7): 619.
In article      CrossRef
 
[155]  Einstein, A. (1939). “On A Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses”. Annals of Mathematics 40 (4): 922-936.
In article      CrossRef
 
[156]  Kerr, R. P. (2009). “The Kerr and Kerr-Schild metrics”. In Wiltshire, D. L.; Visser, M.; Scott, S. M. The Kerr Spacetime. Press.
In article      
 
[157]  Hawking, S. W.; Penrose, R. (January 1970). “The Singularities of Gravitational Collapse and Cosmology”. Proceedings of the Royal Society A 314 (1519): 529-548.
In article      CrossRef
 
[158]  Rees, M. J.; Volonteri, M. (2007). “Massive black holes: formation and evolution”. In Karas, V.; Matt, G. Black Holes from Stars to Galaxies-Across the . Press. pp. 51-58.
In article      PubMed
 
[159]  Penrose, R. (2002). “Gravitational Collapse: The Role of General Relativity”. General Relativity and Gravitation 34 (7): 1141.
In article      CrossRef
 
[160]  Carr, B. J. (2005). “Primordial Black Holes: Do They Exist and Are They Useful?”. In Suzuki, H.; Yokoyama, J.; Suto, Y. et al. Inflating Horizon of Particle Astrophysics and Cosmology. Press.
In article      
 
[161]  Giddings, S. B.; Thomas, S. (2002). “High energy colliders as black hole factories: The end of short distance physics”. Physical Review D 65 (5): 056010.
In article      CrossRef
 
[162]  Harada, T. (2006). “Is there a black hole minimum mass?”. Physical Review D 74 (8): 084004.
In article      CrossRef
 
[163]  Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. (1998). “The hierarchy problem and new dimensions at a millimeter”. Physics Letters B 429 (3-4): 263.
In article      CrossRef
 
[164]  LHC Safety Assessment Group. “Review of the Safety of LHC Collisions”. CERN.
In article      
 
[165]  Cavaglià, M. (2010). “Particle accelerators as black hole factories?”. Einstein-Online (Max Planck Institute for Gravitational Physics (Albert Einstein Institute)) 4: 1010.
In article      
 
[166]  Vesperini, E.; McMillan, S. L. W.; d'Ercole, A. et al. (2010). “Intermediate-Mass Black Holes in Early Globular Clusters”. The Astrophysical Journal Letters 713 (1): L41-L44.
In article      CrossRef
 
[167]  Zwart, S. F. P.; Baumgardt, H.; Hut, P. et al. (2004). “Formation of massive black holes through runaway collisions in dense young star clusters”. Nature 428 (6984): 724-6.
In article      CrossRefPubMed
 
[168]  O'Leary, R. M.; Rasio, F. A.; Fregeau, J. M. et al. (2006). “Binary Mergers and Growth of Black Holes in Dense Star Clusters”. The Astrophysical Journal 637 (2): 937.
In article      CrossRef
 
[169]  Page, D. N. (2005). “Hawking radiation and black hole thermodynamics”. New Journal of Physics 7: 203.
In article      CrossRef
 
[170]  “Evaporating black holes?”. Einstein online. Max Planck Institute for Gravitational Physics. 2010. Retrieved 2010-12-12.
In article      
 
[171]  Giddings, S. B.; Mangano, M. L. (2008). “Astrophysical implications of hypothetical stable TeV-scale black holes”. Physical Review D 78 (3): 035009.
In article      CrossRef
 
[172]  Peskin, M. E. (2008). “The end of the world at the Large Hadron Collider?”. Physics 1: 14.
In article      CrossRef
 
[173]  “Ripped Apart by a Black Hole”. ESO Press Release. Retrieved 19 July 2013.
In article      
 
[174]  Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L. et al. (1994). “Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts”. Astrophysical Journal 434 (2): 557-559.
In article      CrossRef
 
[175]  Naeye, R. “Testing Fundamental Physics”. NASA. Retrieved 2008-09-16.
In article      
 
[176]  “Event Horizon Telescope”. MIT Haystack Observatory. Retrieved 6 April 2012.
In article      
 
[177]  McClintock, J. E.; Remillard, R. A. (2006). “Black Hole Binaries”. In Lewin, W.; van der Klis, M. Compact Stellar X-ray Sources. Press.
In article      
 
[178]  Celotti, A.; Miller, J. C.; Sciama, D. W. (1999). “Astrophysical evidence for the existence of black holes”. Classical and Quantum Gravity 16 (12A): A3-A21.
In article      CrossRef
 
[179]  Winter, L. M.; Mushotzky, R. F.; Reynolds, C. S. (2006). “XMM-Newton Archival Study of the Ultraluminous X-Ray Population in Nearby Galaxies”. The Astrophysical Journal 649 (2): 730.
In article      CrossRef
 
[180]  , C. T. (1972). “Identification of Cygnus X-1 with HDE 226868”. Nature 235 (5336): 271-273.
In article      CrossRef
 
[181]  Webster, B. L.; Murdin, P. (1972). “Cygnus X-1-a Spectroscopic Binary with a Heavy Companion ?”. Nature 235 (5332): 37-38.
In article      CrossRef
 
[182]  Rolston, B. (10 November 1997). “The First Black Hole”. The bulletin. . Archived from the original on 2008-05-02. Retrieved 2008-03-11.
In article      
 
[183]  Shipman, H. L. (1 January 1975). “The implausible history of triple star models for Cygnus X-1 Evidence for a black hole”. Astrophysical Letters 16 (1): 9-12.
In article      
 
[184]  Narayan, R.; McClintock, J. (2008). “Advection-dominated accretion and the black hole event horizon”. New Astronomy Reviews 51 (10-12): 733.
In article      CrossRef
 
[185]  “NASA scientists identify smallest known black hole” (Press release). . 2008-04-01. Retrieved 2009-03-14.
In article      
 
[186]  Krolik, J. H. (1999). Active Galactic Nuclei. Press. 1.2.
In article      
 
[187]  Sparke, L. S.; Gallagher, J. S. (2000). Galaxies in the Universe: An Introduction. Press. 9.1.
In article      
 
[188]  Kormendy, J.; Richstone, D. (1995). “Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei”. Annual Reviews of Astronomy and Astrophysics 33 (1): 581-624.
In article      CrossRef
 
[189]  King, A. (2003). “Black Holes, Galaxy Formation, and the MBH-s Relation”. The Astrophysical Journal Letters 596 (1): 27-29.
In article      CrossRef
 
[190]  Ferrarese, L.; Merritt, D. (2000). “A Fundamental Relation Between Supermassive Black Holes and their Host Galaxies”. The Astrophysical Journal Letters 539 (1): 9-12.
In article      CrossRef
 
[191]  “A Black Hole's Dinner is Fast Approaching”. ESO Press Release. Retrieved 6 February 2012.
In article      
 
[192]  Gillessen, S.; Eisenhauer, F.; Trippe, S. et al. (2009). “Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center”. The Astrophysical Journal 692 (2): 1075.
In article      CrossRef
 
[193]  Ghez, A. M.; Klein, B. L.; Morris, M. et al. (1998). “High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy”. The Astrophysical Journal 509 (2): 678.
In article      CrossRef
 
[194]  Bozza, V. (2010). “Gravitational Lensing by Black Holes”. General Relativity and Gravitation 42 (42): 2269-2300.
In article      CrossRef
 
[195]  Barack, L.; Cutler, C. (2004). “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”. Physical Review D 69 (69): 082005.
In article      CrossRef
 
[196]  Kovacs, Z.; Cheng, K. S.; Harko, T. (2009). “Can stellar mass black holes be quark stars?”. Monthly Notices of the Royal Astronomical Society 400 (3): 1632-1642.
In article      CrossRef
 
[197]  Kusenko, A. (2006). “Properties and signatures of supersymmetric Q-balls”.
In article      
 
[198]  Hansson, J.; Sandin, F. (2005). “Preon stars: a new class of cosmic compact objects”. Physics Letters B 616 (1-2): 1.
In article      CrossRef
 
[199]  Kiefer, C. (2006). “Quantum gravity: general introduction and recent developments”. Annalen der Physik 15 (1-2): 129.
In article      CrossRef
 
[200]  Skenderis, K.; Taylor, M. (2008). “The fuzzball proposal for black holes”. Physics Reports 467 (4-5): 117.
In article      CrossRef
 
[201]  Hawking, S. W. (1971). “Gravitational Radiation from Colliding Black Holes”. Physical Review Letters 26 (21): 1344-1346.
In article      CrossRef
 
[202]  Wald, R. M. (2001). “The Thermodynamics of Black Holes”. Living Reviews in Relativity 4 (6): 12119.
In article      
 
[203]  Strominger, A.; Vafa, C. (1996). “Microscopic origin of the Bekenstein-Hawking entropy”. Physics Letters B 379 (1-4): 99.
In article      CrossRef
 
[204]  Carlip, S. (2009). “Black Hole Thermodynamics and Statistical Mechanics”. Lecture Notes in Physics. Lecture Notes in Physics 769: 89.
In article      
 
[205]  Hawking, S. W. “Does God Play Dice?”. www.hawking.org.uk. Retrieved 2009-03-14.
In article      
 
[206]  Giddings, S. B. (1995). “The black hole information paradox”. Particles, Strings and Cosmology. Johns Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5.
In article      
 
[207]  Mathur, S. D. (2011). “The information paradox: conflicts and resolutions”. XXV International Symposium on Lepton Photon Interactions at High Energies.
In article      
 
[208]  “The generally accepted explanation of the mass discrepancy is the proposal that spiral galaxies consist of a visible component surrounded by a more massive and extensive dark component ..” is stated in the introduction of the article: K.G. Begeman, A.H. Broeils, R.H.Sanders (1991). “Extended rotation curves of spiral galaxies: dark haloes and modified dynamics”. Monthly Notices of the Royal Astronomical Society 249: 523-537.
In article      
 
[209]  For an extensive discussion of the data and its fit to MOND see Mordehai Milgrom (2007). “The MOND Paradigm”.
In article      
 
[210]  Kuijken K., Gilmore G., 1989a, MNRAS, 239, 651.
In article      
 
[211]  Babcock, H, 1939, “The rotation of the Andromeda Nebula”, Lick Observatory bulletin ; no. 498
In article      
 
[212]  L. Volders. “Neutral hydrogen in M 33 and M 101”. Bulletin of the Astronomical Institutes of the 14 (492): 323-334.
In article      
 
[213]  V. Rubin, W. K. Ford, Jr (1970). “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. Astrophysical Journal 159: 379.
In article      CrossRef
 
[214]  A. Bosma, “The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types”, PhD Thesis, Rijksuniversiteit Groningen, 1978, available online at the Nasa Extragalactic Database.
In article      
 
[215]  V. Rubin, N. Thonnard, W. K. Ford, Jr, (1980). “Rotational Properties of 21 Sc Galaxies with a Large and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)”. Astrophysical Journal 238: 471.
In article      CrossRef
 
[216]  Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M. (May 10, 1996). “The Structure of Cold Dark Matter Halos”. The Astrophysical Journal 463: 563.
In article      CrossRef
 
[217]  Merritt, David; Graham, Alister; Moore, Benjamin; Diemand, Jurg; Terzic, Balsa (20 December 2006). “Empirical Models for Dark Matter Halos”. The Astronomical Journal 132 (6): 2685-2700.
In article      CrossRef
 
[218]  Merritt, David; et al. (May 2005). “A Universal Density Profile for Dark and Luminous Matter?”. The Astrophysical Journal 624 (2): L85-L88.
In article      CrossRef
 
[219]  Reliance on Indirect Evidence Fuels Dark Matter Doubts: Scientific American
In article      
 
[220]  Weinberg, David H.; et, al. (2008). “Baryon Dynamics, Dark Matter Substructure, and Galaxies”. The Astrophysical Journal 678 (1): 6-21.
In article      CrossRef
 
[221]  Duffy, Alan R.; al., et (2010). “Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles”. Monthly Notices of the Royal Astronomical Society 405 (4): 2161-2178.
In article      
 
[222]  W. J. G. de Blok, S. McGaugh (1997). “The dark and visible matter content of low surface brightness disc galaxies”. Monthly Notices of the Royal Astronomical Society 290: 533-552.
In article      CrossRef
 
[223]  M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, S. McGaugh (1995). “The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution”. Monthly Notices of the Royal Astronomical Society 273: L35-L38.
In article      
 
[224]  W. J. G. de Blok, A. Bosma (2002). “High-resolution rotation curves of low surface brightness galaxies”. Astronomy & Astrophysics 385 (3): 816-846.
In article      CrossRef
 
[225]  de Blok, W. G. The Core Cusp Problem. “Dwarf Galaxy Cosmology” special issue of Advances in Astrophysics. 2009. [1].
In article      
 
[226]  Peter, Annika H. G. Dark Matter: A Brief Review. Proccedings of Science. 2012.
In article      
 
[227]  J. D. Bekenstein (2004). “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”. Physical Review D 70 (8): 083509.
In article      CrossRef
 
[228]  J. W. Moffat (2006). “Scalar tensor vector gravity theory”. Journal of Cosmology and Astroparticle Physics 3 (03): 4.
In article      CrossRef
 
[229]  J. R. Brownstein and J. W. Moffat (2006). “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”. Astrophysical Journal 636 (2): 721.
In article      CrossRef
 
[230]  Chandra Press Room :: Chandra Casts Cloud On Alternative Theory :: October 22, 2002
In article      
 
[231]  M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L. David, W. Forman, C. Jones, S. Murray, and W. Tucker. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56.
In article      
 
[232]  M. Markevitch, S. Randall, D. Clowe, A. Gonzalez and M. Bradac (16-23 July 2006). “Dark Matter and the Bullet Cluster”. 36th COSPAR Scientific Assembly. . abstract only
In article      
 
[233]  Smith, J.M.; Van Ness, H.C., Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw Hill.
In article      
 
[234]  Haynie, Donald, T. (2001). Biological Thermodynamics. Press.
In article      
 
[235]  Crawford, F.H. (1963). Heat, Thermodynamics, and Statistical Physics, Rupert Hart-Davis, London, Harcourt, Brace & World, Inc., pp. 106-107.
In article      
 
[236]  Haase, R. (1963/1969). Thermodynamics of Irreversible Processes, translated in English, Addison-Wesley, , pp. 10-11.
In article      
 
[237]  Dugdale, J.S. (1998). Entropy and its Physical Meaning. Taylor and Francis.
In article      
 
[238]  Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Poggendorff's Annalen der Physik, LXXIX (Dover Reprint).
In article      
 
[239]  Sir William Thomson, LL.D. D.C.L., F.R.S. (1882). Mathematical and Physical Papers 1. , : C.J. Clay, M.A. & Son, Press. p. 232.
In article      
 
[240]  Hess, H. (1840). Thermochemische Untersuchungen, Annalen der Physik und Chemie (Poggendorff, ) 126(6): 385-404.
In article      
 
[241]  Gibbs, Willard, J. (1876). Transactions of the Connecticut Academy, III, pp. 108-248, Oct. 1875 - May 1876, and pp. 343-524, May 1877 - July 1878.
In article      
 
[242]  Duhem, P.M.M. (1886). Le Potential Thermodynamique et ses Applications, Hermann, Paris.
In article      
 
[243]  Lewis, Gilbert N.; Randall, Merle (1923). Thermodynamics and the Free Energy of Chemical Substances. McGraw-Hill Book Co. Inc.
In article      
 
[244]  Guggenheim, E.A. (1933). Modern Thermodynamics by the Methods of J.W. Gibbs, , .
In article      
 
[245]  Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954). Chemical Thermodynamics. Longmans, Green & Co., . Includes classical non-equilibrium thermodynamics.
In article      
 
  • CiteULikeCiteULike
  • Digg ThisDigg
  • MendeleyMendeley
  • RedditReddit
  • Google+Google+
  • StumbleUponStumbleUpon
  • Add to DeliciousDelicious
  • FacebookFacebook
  • TwitterTwitter
  • LinkedInLinkedIn