Open Access Peer-reviewed

Removal of Turbidity, Suspended Solids and Ions of Fe from Aqueous Solution using Okra Powder by Coagulation-Flocculation Process

Edilson de Jesus1,, Paulo Victor Cruz1, José Adair Pacífico1, Antônio Santos Silva2

1Departament of Chemical Engineering, Federal of Sergipe University, São Cristóvão-SE, Brazil

2Departament of Mathmatics, Federal of Sergipe University, São Cristóvão-SE, Brazil

American Journal of Water Resources. 2013, 1(3), 20-24. DOI: 10.12691/ajwr-1-3-1
Published online: August 25, 2017

Abstract

This work evaluates the efficiency of okra powder in removing turbidity, suspended solids and ions of Fe from synthetic raw water through coagulation-flocculation process. The raw water samples with initial turbidity of 100 NTU were prepared using natural red clay (-32+100 mesh particle size). The jar tests were carried out by varying the pH and the dose of okra powder. The initial pH 8.0 of synthetic raw water and 30 mgL-1 okra powder caused 80.92% reduction of Fe ions and 99% turbidity removal after 10 minutes of sedimentation. The efficiency of Fe the removal was evaluated by characterization EDX sludge formed after sedimentation with and without okra powder and the jar tests were carried out using a solution of ferric sulfate as the coagulating agent.

Keywords:

coagulation-flocculation, okra powder, ions of Fe, suspended solids, turbidity
[1]  Libânio M. Fundamentos de qualidade e tratamento de água. Átomo, Campinas, 2005.
 
[2]  Akhtar M., Iqbal S., Bhanger M.I., Zia-Ul-Haq M., Moazzam M. “Sorption of organophosphorous pesticides onto chickpea husk from aqueous solutions”. Colloids Surf B Biointerfaces, 69:63–70, 2009.View Article  PubMed
 
[3]  Okuda T., Baes A.U., Nishijima W., Okada M. “Improvement of extraction method of coagulation active components from Moringa oleifera seed”. Water Res, 33(15): 3373-3378, 1999.View Article
 
[4]  Ndabigengesere A., Narasiah K.S. “Quality of water treated by coagulation using Moringa oleifera seeds”. Water Res, 32:781-91, 1998.View Article
 
[5]  Zeng D., Wu J.; Kennedy J.F. “Application of a chitosan flocculant to water treatment”. Carbohydr Polym, 71:135-9, 2008.View Article
 
[6]  Santos Filho J.D., Santa Rita E.S. Gerenciamento do resíduo gerado na clarificação de água da RLAM [monograph on the internet]. Universidade Federal da Bahia (Escola Politécnica): Pós-Graduação em Gerenciamento e Tecnologia Ambientais na Indústria; 2008 [cited 2012 set 22]: Available from: http://www.teclim.ufba.br/site/material_online/monografias/mono_santosfilho_e_rita.pdf.
 
[7]  Gupta V.K., Ali I. “Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste”. J Colloid Interface Sci, 271(2):321-8, 2004.View Article  PubMed
 
[8]  Gupta V.K., Gupta M., Sharma S. “Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste”, Water Res, 35:1125-34, 2001.View Article
 
[9]  Gupta V.K., Rastogi A. “Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass”. J Hazard Mater, 154: 347-54, 2008.View Article  PubMed
 
[10]  Gupta V.K., Rastogi A. “Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study”, Colloids Surf B Biointerfaces, 64:170-8, 2008.View Article  PubMed
 
[11]  Gupta V.K., Rastogi A. “Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase”, J. Hazard Mater, 153:759-66, 208.
 
[12]  Gupta V.K., Rastogi A. “Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies”, J Hazard Mater, 152:407-14, 2008.View Article  PubMed
 
[13]  Singh A.K., Gupta V.K., Gupta B. “Chromium (III) selective membrane sensors based on Schiff bases as chelating ionophores”. Anal Chim Acta, 585:171-8, 2007.View Article  PubMed
 
[14]  Pehlivan E., Kahraman H.T. Hexavalent chromium removal by Osage Orange, Food Chem, 133:1478-84, 2012.View Article
 
[15]  Agarwal M., Srinivasan R., Mishira A. “Study on flocculation efficiency of okra gum in sewage waste water”, Macromol Mater and Eng, 286:560-3, 2001.View Article
 
[16]  Calixto C.D. Óleo de quiabo como fonte alternativa para produção de biodiesel e avaliação de antioxidantes naturais em biodiesel etílico de soja [monograph on the internet]. Universidade Federal da Paraíba: Programa de Pós-Graduação em Química; 2011 [cited 2012 oct 22]: Available from: http://www.quimica.ufpb.br/posgrad/dissertacoes/Dissertacao_Clediana_Dantas_Calixto.pdf.
 
[17]  FILGUEIRA, F. A. R. Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças – Viçosa: UFV, cap.24, p.337-382, 2000.
 
[18]  COSTA, M.C.B; OLIVEIRA, G.D.; HAAG, H.P. Nutrição mineral de hortaliças – Efeito da omissão dos macronutrientes e do boro, no desenvolvimento e na composição química de hortaliças. In: HAAG, H. P.; MINAMI, K.; Nutrição mineral em hortaliças. Campinas: Fundação Cargill, 1981, cap. 6, p.257-276.
 
[19]  Pedrosa J.F., Mizubuti A., Casali V.W.D., Campos J.P. “Caracterização Morfológica de Introduções de Quiabeiro (Abelmoschus esculentus (L.) Moench)”. Horticultura Brasileira, 1:14-23, 1983.
 
[20]  MOTA, W.F.; FINGER, F.L.; SILVA, D.J.H.; CORRÊA, P.C.; FIRME, L.P.; NEVES, L.L.M. “Caracterização físico-química de frutos de quatro cultivares de quiabo”. Horticultura Brasileira, Brasília, v.23, n.3, 722-725, 2005.View Article
 
[21]  Arapitsas P. “Identification and Quantification of Polyphenolic Compounds from Okra Seeds and Skins”. Food Chem, 110:1041-45, 2008.View Article
 
[22]  Agarwal M., Rajani S., Mishra A., Rai J. “Utilization of okra gum for treatment of tannery effluent”. International Journal of Polymeric Materials, 52:1049-57, 2003.View Article
 
[23]  Calado V., Montgomery D.C. Planejamento de Experimentos Usando o Statistica. E-papers, Rio de Janeiro, 2010.
 
[24]  Standard Methods for the Examination of Water and Wastewater, 21rd ed., Washington: American Public Heath Association, 2005.
 
[25]  Shukla D., Vankar, S. “Efficient biosorption of chromium (VI) ion by dry Araucaria leaves”. Environ Sci Pollut Res, 19(6):2321-28, 2012.View Article  PubMed
 
[26]  Santhana A., Kumar K., Kalidhasan S., Rajesh V., Rajesh N. “Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater”. Ind Eng Chem Res, 51:58-69, 2012.View Article
 
[27]  Marshall W.E, Champagne E.T. “Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewater”. J Environ Sci Health A, 30(2): 241-61, 1995.View Article
 
[28]  Altun T., Pehlivan E. “Removal of Cr(VI) from aqueous solutions by modifield walnud shells”. Food Chem, 132:693-700, 2012.View Article
 
[29]  Bernardo L. Métodos e Técnicas de Tratamento de Água. ABES, Rio de Janeiro, 1993.
 
[30]  Pehlivan E., Cetin S., Yanik B.H. “Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash”. Journal Hazar Mater, 135(1):193-9, 2006.