Open Access Peer-reviewed

Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses

Mykola M. Krupa
Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine
American Journal of Nanomaterials. 2013, 1(2), 13-23. DOI: 10.12691/ajn-1-2-1
Published online: August 25, 2017

Abstract

The article focuses on photon drag effect under laser radiation in solid state materials. This effect causes a high concentration of nonequilibrium electrons in the area of the laser beam the exit out of material. Coulomb interaction of spatial charge of these electrons with the charged impurity atoms can cause their drift in the direction of laser radiation. The photon drag effect can be used in laser doping technology of thin films. In multilayer magnetic nanofilms the photon drag effect of polarized electrons can lead to magnetic reversal of magnetic layers, which can be used to control a high speed spin current in the elements of spintronics.

Keywords:

laser radiation, photon drag effect, semiconductors, multilayer magnetic nanofilms, spin current
[1]  Ohno, “Making Nonmagnetic Semiconductors Ferro-magnetic”, Science, vol. 281, pp. 951-956, August, 1998.View Article  PubMed
 
[2]  J. Cibert, J. Bobo, U. Lüders, “Development of new materials for spintronics”, Comptes Rendus Physique, vol. 6, pp. 977-996, Sept. 2005.View Article
 
[3]  V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. de Groot, “Half-metallicity in NiMnSb: A variational cluster approach with ab initio parameters”, Rev. Mod. Phys., vol. 81, pp. 315-323, May 2010.
 
[4]  E. A. Al-Nuaimy, Hussein Al Abdulqader, Journal of Electron Devices, “BJT Fabrication Using Excimer Laser Assisted Spin-on Doping Technique”, Journal of Electron Devices, vol. 6, pp. 197-202, 2008.
 
[5]  I. Zuti´c, J. Fabian, and S. Das Sarma, “Spintronics: Funda-mentals and Applications,” Rev. Mod. Phys., vol. 76, #2, pp. 323-410, Febr. 2004.
 
[6]  P. S. Pershan, J. P. Ziel , and L. D. Malmstrom, Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev., vol. 143, #2. pp. 574-583, 1966.View Article
 
[7]  R. Hertel, Theory of Optical Rotation, Faraday Effect, and Inverse Faraday Effect, Journal of Magnetism and Magnetic Materials, vol. 303, pp. L1-L4, 2006.View Article
 
[8]  J. C. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, vol. 159, pp. L 1-L7, 1996.
 
[9]  J. Katine, F. Albert, R. Buhrman E. B. Myers and D. C. Ralph., Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillar, Phys. Rev. Letters, vol. 84, pp. 3149-3152, 2000.View Article  PubMed
 
[10]  M.M. Krupa, Spin_Dependent Current and Magnetization Reversal in Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76 Nanofilms in Laser Radiation Field, Journal of Experimental and Theoretical Physics, vol. 108, pp. 856-865, #5, 2009.
 
[11]  M. M. Krupa, Laser Radiation Control of the Magnetic State of Multilayer Nanofilms, Technical Physics, vol. 56, #1, pp. 107-116. 2011.View Article
 
[12]  A. M. Danishevskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, “Photon drag effect of the free carriers in direct interband transitions in semiconductors”, Sov. Phys. JETP, vol. 31, pp. 292-297, Nov. 1970.
 
[13]  A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett.,vol. 17, pp. 75-79, Febr. 1970.
 
[14]  J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals”, Phys. Rev., B, vol. 61, #15, pp. 10471-10477, April 2000.View Article
 
[15]  M.M. Krupa, A. M. Pogorily, “Scanning of laser radiation and clearing of materials on the basis of the phenomenon light induced drift of particles in semiconductors”, Sov. Technical Physics, vol.68, № 4. – P.121-124, 1998.
 
[16]  M.M. Krupa, A.M. Korostil, Yu. B. Skirta, “Drift электронов and atoms in the field of laser radiation and its influence on optical properties of semiconductors”, Radiophys. and Quantum Electronic., vo. XLVIII, № 8 pp. 45-52, 2005.
 
[17]  M.M. Krupa, Yu. B. Skirta, “Drift of atoms of bismuth in the field of laser radiation and a data recording in thin films phthalocyanine dye”, Radiophysic and Quantum Electronic, vol. XLІХ, №6, pp. 513-518, 2006.
 
[18]  R. Merservey, P. M. Tedrov, “Spin-Polarized Electron Tun-neling”, Phys. Rep., vol. 238, #4, pp. 175-239, 1994.
 
[19]  R. Pittini, P. Wachter, Cerium compounds: The new gen-eration magneto-optical Kerr rotators with unprecedented large figure of merit”, JMMM, vol. 186, #3, pp. 306-312, July 1998.View Article
 
[20]  H. J. Leamy, A. G. Dirks, “Microstructure and magnetism in amorphous rare-earth-transition-metal thin films. II Magnetic anisotropy “, J. Appl. Phys., vol. 50, №4, pp. 2871-2882, 1979.
 
[21]  M.M. Krupa, A.M. Korostil, Impact of laser irradiation on magneto-optical properties of multilayered film structures, Inter. Journal of Modern Physics B, vol. 21,#32, pp. 5339-5350, 2007.View Article
 
[22]  M. Komori, T. Nukata, K. Tsutsumi, C. Inokyti, I. Sakyrai, “Amorphous TbFe Films for Magnetic Printing with Laser Writing”, IEEE Trans. Magnetic, vol. 20, №5, pp. 1042-1044, 1984.
 
[23]  M. Julliere, “Tunneling between ferromagnetic films”, Phys. Letter., vol. 54, #3, pp. 225-226, September 1975.View Article