Open Access Peer-reviewed

Electric and Dielectric Study of Zinc Substituted Cobalt Nanoferrites Prepared by Solution Combustion Method

Ritu Rani1,, Gagan Kumar1, Khalid Mujasam Batoo2, M. Singh1

1Materials Science Research Laboratory, Department of Physics, Himachal Pradesh University, Shimla, India

2King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia

American Journal of Nanomaterials. 2013, 1(1), 9-12. DOI: 10.12691/ajn-1-1-3
Published online: August 25, 2017

Abstract

In the present work, zinc substituted cobalt nanoferrites, with formula Co(1-x)ZnxFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4), have been prepared by solution combustion method and are investigated for their electric and dielectric properties such as dc resistivity, dielectric constant and dielectric loss. Analysis of the X-ray diffraction pattern of all the samples confirmed the formation of spinel structure. The surface morphology of the samples is studied by using TEM. The dc resistivity was found to be increasing with an increasing substitution of zinc ions and the high value of dc resistivity, 108 Ω cm, make these nanoferrites more suitable at high frequency applications. Dielectric constant and dielectric loss tangent, measured in the frequency range from 1kHz to 1MHz, are found to be decreasing with an increase in frequency. Possible mechanisms responsible for the results are discussed minutely in this paper.

Keywords:

DC resistivity, dielectric properties, nanoferrites
[1]  Chand, J., Kumar, Gagan, Kumar, P., Sharma, S. K., Knobel, M. and Singh, M., “Effect of Gd3+ doping on magnetic, electric and dielectric properties of MgGdxFe2−xO4 ferrites processed by solid state reaction technique,” J. Alloys and Compds., 509. 9638-9644. Oct. 2011.View Article
 
[2]  Kumar, Gagan, Chand, J., Verma, S. and Singh, M., “Mixed Mg-Mn Ferrites for High Frequency Applications Processed by Citrate Precursor Technique,” J. Phys. D: Appl. Phys., 42. 155001-155006. July. 2009.
 
[3]  Gupta, Manik and Randhawa, B. S., “Microstructural, Magnetic and Electric Properties of Cs-Zn Ferrites Prepared by Solution Combustion Method,” Solid State Sciences, 14. 849-856. Jul. 2012.View Article
 
[4]  Jacob, B. P., Thankachan, S., Xavier, S. and Mohammed, E.M., “Dielectric Behavior and AC Conductivity of Tb3+ Doped Ni0.4Zn0.6Fe2O4 Nanoparticles,” J. Alloys and Compds., 541. 29-35. Nov. 2012.View Article
 
[5]  Hashim, M., Alimuddin, Kumar, S., Koob, B.H., Shirsath, Sagar E., Mohammed, E.M., Shah, Jyoti, Kotnala, R.K., Choi, H.K., Chung, H. and Kumar, Ravi, “Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles,” J. Alloys and Compds., 518. 11-18. Mar. 2012.View Article
 
[6]  Sharma, Anshu, Parmar, Kusum, Kotnala R.K. and Negi, N.S., “Magnetic and Dielectric Properties of CoxZn1-xFe2O4 Synthesized by Metallo-Organic Decomposition Technique,” International J. Adv.Engg. Tech., 5. 544-554. Nov. 2012.
 
[7]  Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S. and Jeyadevan, B., “Preparation and Properties of Temperature Sensitive Magnetic Fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 Nanoparticles,” Physica B, 368. 223-230. Nov. 2005.View Article
 
[8]  Meaz, T. M., Attia, S. M. and Ata, Abo El, “Effect of Tetravalent Titanium Ions Substitution on the Dielectric Properties of Co-Zn Ferrites,” J. Magn. Magn. Mater., 257. 296-305. Feb. 2003.View Article
 
[9]  Köseoğlu, Y., Baykal, A., Gozuak, F. and Kavas, H., “Structural and Magnetic Properties of CoxZn1-xFe2O4 Nanocrystals Synthesized by Microwave Method,” Polyhedron, 28. 2887-2892. Sept. 2009.View Article
 
[10]  Gul, I.H. and Maqsood, A., “Structural, Magnetic and Electrical Properties of Cobalt Ferrites Prepared by Sol-Gel Route,” J. Alloys and Compds., 465. 227-231. Oct. 2008.View Article
 
[11]  Chengyi, Hou, Hao, Yu, Qinghong, Zhang, Yaogang, Li and Hongzhi, Wang, “Preparation and Magnetic Property Analysis of Monodisperse Co-Zn Ferrite Nanospheres,” J. Alloys and Compds., 491. 431-435. Feb. 2010.View Article
 
[12]  Patil, V. G., Shirsath, S. E., More, S. D., Shukla, S. J. and Jadhav, K. M., “Effect of Zinc Substitution on Structural and Elastic Properties of Cobalt Ferrite,” Journal of Alloys and Compounds,” 488. 199-203. Nov. 2009.View Article
 
[13]  Gozuak, F., Koseoglu, Y., Baykal, A. and Kavas, H., “Synthesis and Characterization of CoxZn1-xFe2O4 Magnetic Nanoparticles Via a PEG-Assisted Route,” J. Magn. Magn. Mater., 321. 2170-2177. Jul. 2009.View Article
 
[14]  Tawfic, A., Hamada, M. and Hemeda, O.M., “Effect of Laser Irradiation on the Structure and Electromechanical Properties of Co-Zn Ferrite,” J. Magn. Magn. Mater., 250. 77-82. Sept. 2002.View Article
 
[15]  Gul, I. H., Abbasi, A. Z., Amin, F., Anis-ur-Rehman, M. and Maqsood, A., “Structural, Magnetic and Electrical Properties of Co1-xZnxFe2O4 synthesized by Co-precipitation Method,” J. Magn. Magn. Mater., 311. 494-499. Apr. 2007.View Article
 
[16]  Josyulu, O. S. and Sobhandari, J., “DC Conductivity and Dielectric Behavior of Cobalt-Zinc Ferrite,” Physica Status Solidi (a), 59. 323-329. May. 1980.
 
[17]  Singhal, Sonal, Singh, J., Barthwal, S. K. and Chandra, K., “Preparation and Characterization of Nickel-Substituted Cobalt Ferrite (Co1-xNixFe2O4),” J. Solid State Chem., 178. 3183-3189. Oct. 2005.View Article
 
[18]  Kumar, Gagan, Rani, Ritu, Sharma, Sucheta, Batoo, K. M. and Singh, M., “Electric and Dielectric Study of Cobalt Substituted Mg-Mn Nanoferrites Synthesized by Solution Combustion Technique,” Ceram. Inter., 2012, In Press.
 
[19]  Rani, Ritu, Sharma, S. K., Pirota, K. R., Knobel, M., Thakur, Sangeeta and Singh, M., “Effect of Zinc Concentration on the Magnetic Properties of Cobalt–Zinc Nanoferrite,” Ceram. Inter., 38. 2389-2394. Apr. 2012.View Article
 
[20]  Verwey, E. J. and De Boer, J. H., “Cation Arrangement in a few Oxides with Crystal Structures of the Spinel Type,” Recueil des Travaux Chimiques des Pays-Bas, 55. 531-540. May. 1936.
 
[21]  Lakshman, A., Subba Rao, P. S. V., Rao, B. P. and Rao, K. H., “Electrical Properties of In3+ and Cr3+ Substituted Magnesium- Manganese Ferrites,” J. Phys. D: Appl. Phys., 38. 673-678. Feb. 2005.View Article
 
[22]  Fawzi, A. S., Sheikh, A. D. and Mathe, V. L., “Structural, Dielectric Properties and AC Conductivity of Ni(1-x)ZnxFe2O4 Spinel Ferrite,” J. Alloys and Compds., 502. 231-237. Jul. 2010.View Article
 
[23]  Koops, C. G., “On the Dispersion of Resistivity and Dielectric Constant of some Semiconductors at Audio Frequencies,” Physical Review, 83. 121-124. Jul. 1951.View Article
 
[24]  Jadhav, S. S., Shrisath, Sagar. E., Toksha, B. G., Shengule, D. R. and Jadhav, K. M., “Structural and Dielectric Properties of Ni-Zn Ferrite Nanoparticles Prepared by Co-precipitation Method,” J. Opto. Adv. Mater., 10. 2644-2648. Oct. 2008.