Open Access Peer-reviewed

Applicability of Novel Anionic Surfactant as a Corrosion Inhibitor of Mild Steel and for Removing Thin Petroleum Films from Water Surface

V. M. Abbasov1,, Hany M. Abd El-Lateef1, 2, L. I. Aliyeva1, E. E. Qasimov1, I. T. Ismayilov1, Ahmed. H. Tantawy1, 3, S. A. Mamedxanova1

1Mamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

2Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt

3Chemistry Department, Faculty of Science, Benha University, Benha, Egypt

American Journal of Materials Science and Engineering. 2013, 1(2), 18-23. DOI: 10.12691/ajmse-1-2-1
Published online: August 25, 2017

Abstract

Sulfated fatty acid potassium salt (PS) as novel anionic surfactant was synthesized and then its corrosion inhibition for mild steel in CO2-saturated 1% NaCl solution was investigated using potentiodynamic polarization measurements. Results indicated that the PS compound acted as an anodic inhibitor by strong chemical interaction with the mild steel surface according to the Langmuir adsorption isotherm. The inhibition efficiency increases with increasing PS concentration, and the highest inhibition efficiencies are observed when the PS concentration reaches values close to its critical micelle concentration (CMC). This corrosion inhibition for mild steel in chloride solution can be attributed to the covering of adsorbed inhibitor molecules on the metal surface. Petroleum-collecting and petroleum-dispersing properties of the synthesized surfactant were studied using as an example thin films of Ramany crude oil on the surface of distilled, fresh and sea waters.

Keywords:

anionic surfactant, corrosion inhibitor, mild steel, petroleum-collecting, dispersing agent.
[1]  Migahed, M.A.,،،Corrosion inhibition of steel pipelines in oil fields by N,N-di(poly oxy ethylene) amino propyl lauryl amide, Progress in Organic Coatings, 54. 91-98. 2005.View Article
 
[2]  Lopez, D.A., Schreiner, W.H., de Sanchez, S.R., Simison, S.N., “The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization, Appl. Surf. Sci., 207. 69-85. 2003.View Article
 
[3]  Durnie, W., Kinsella, B., De Marco, R., Jefferson, A., “A study of the adsorption properties of commercial carbon dioxide corrosion inhibitor formulations, J. Appl. Electrochem., 31. 1221-1226. 2001.View Article
 
[4]  Fu, S.L., Garcia, J.G., Griffin, A.M., Corrosion/1996, Paper no. 21, NACE International, Houston, 1993.
 
[5]  Webster, S., Harrop, D., McMahon, A., Partidge, G.J., “Proceedings of NACE Corrosion/1993, Paper no. 109, NACE International, Houston, 1993.
 
[6]  Ramachandran, S., Jovancicevic, V., “Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines, Corrosion, 55. 259-267. 1999.View Article
 
[7]  Durnie, W., De Marco, R., Jefferson, A., Kinsella, B., “Development of a structure - Activity relationship for oil field corrosion inhibitors, J. Electrochem. Soc., 146. 1751-1756. 1999.View Article
 
[8]  Wilson, V.S., LeBlanc, G.A., “Petroleum pollution, Rev. Toxicol., 3. 77-112. 2000.
 
[9]  Wolfe, M.F., Schwartz, G.J.B, Singaram, S., Mielbrech t, E .E., Tjeer dema R.S., Sowb y, M .L., “Influence of dispersants on the bioavailability and trophic transfer of petroleum hydrocarbons to larval tops melt ( Atherinops affinis ), Aquat. Toxicol, 52. 49-60. 2001.View Article
 
[10]  Asadov, Z.H., Rahimov, R.A., Nasibova, S.M., Ahmadova, G.A.,“Surface Activity, Thermod ynamics of Micellizatio n and Adsorption Properties of Quaternary Salts Based on Ethanolamines and Decyl Bromide, J Surfact. Deterg., 13. 459-464. 2010.View Article
 
[11]  Asadov, Z.H., Rahimov, R.A., Salamo va, N.N., “Synthesis of Animal Fats Ethylolamides, Ethylolamides Phosphates and their Petroleum-Collecting and Dispersing Properties, J. Am. Oil Chem. Soc., 89. 505-511. 2012.View Article
 
[12]  Asadov, Z.H., Rahimov, R.A., Ahmadova, G.A., “Colloidal-chemical parameters and petroleum- collecting properties of chloroxypropylate surfactants based on epichlorohydrine and carboxylic acid fractions of animal origin, Materials Research Innovations, 14. 327-331. 2010.View Article
 
[13]  Asadov, Z.H., Rahimov, R.A., Poladova, T.A., Nasibova, S.M., Guliyev, A.D., Asadova, A.Z.,“Triethyllenetetramine-based novel cationic surfactants and their comp lexes with anionic polyelectrolytes, Journal of Molecular Liquids, 166. 44-48. 2012.View Article
 
[14]  Dewling, R.T., McCarty, L.T., Environmental International, 3155. 162. 1980.
 
[15]  Smith, R.W., Pavia, R., Oil Spill Conference; API: Washington, DC, December, 3-6.1985.
 
[16]  Fraser, J.P., Advance Planning for Dispersant Oil Spill Conference; API: Washington, DC, 429-4 32. 1995.
 
[17]  Morris, P.R., Martinelli, F., “A specification for oil spill dispersants, Warren Spring Laboratory Report, UK, LR, 448. 1983.
 
[18]  Canevari, G. P., “Oil slick dispersants and methods, U.S. Patent No. 3,793,218. 1974.
 
[19]  Jung, S.W., Kown, O.Y., Joo, C., Kang, J., Kim, M., Shim, W.J., Kim, Y., “Stronger impact of dispersant plus crude oil on natural plankton assemblages in short-term marine mesocosms, Journal of Hazardous Materials, 03. 1-34. 2012.
 
[20]  Agamy, E., “Histopathological liver alterations in juvenile rabbit fish (Siganus canaliculatus) exposed to light Arabian crude oil, dispersed oil and dispersant, Ecotoxicology and Environmental Safety, 75. 171-179. 2012.View Article  PubMed
 
[21]  Cojocaru, C., Macoveanu, M., Cretescu, I.,“ Peat-based sorbents for the removal of oil spills from water surface, Colloids and Surfaces A: Physicochem, Eng. Aspects, 384. 675-684. 2011.View Article
 
[22]  Abd El-Lateef, H. M., Abbasov, V. M., Aliyeva, L. I., Ismayilov, T. I., Qasimov, E. E., Ahmadov, T. U.,“Novel anionic surfactants based on cottonseed oil and their corrosion inhibition efficiency for carbon steel in CO2 saturated solution,ˮ Global J. Phys. Chem., 3. 14. 2012.
 
[23]  Peeters, F., Kipfer, R., Achermann, D., Hofer, M., Aeschbach-Hertig, W., Beyerle, U., Imboden, D. M., Rozanski, K., Frohlich, K., “Analysis of deep-water exchange in the Caspian Sea based on environmental tracers, Deep-Sea Res I, 47. 621-654. 2000.View Article
 
[24]  Tremont, R., De Jesus-Cardona, H., Garcia-Orozco, J., Castro, R.J., Cabrera, C.R., J. Appl. Electrochem, 30. 737. 2000.View Article
 
[25]  Schultze, J.W., Wippermann, K., Electrochim. Acta, 32. 823. 1987.View Article
 
[26]  El-Sayed, A., Mohran, H. S., Abd El-Lateef, H. M.,“Inhibitive action of ferricyanide complex anion on both corrosion and passivation of zinc and zinc–nickel alloy in the alkaline solution, Journal of Power Sources, 196. 6573-6582. 2011.View Article
 
[27]  Abdel Aal, M.S., Abdel Wahab, A.A., El-Sayed, A., Corrosion, 37. 557. 1981.View Article
 
[28]  El-Sayed, A., Mohran, H. S., Abd El-Lateef, H.M.,“The inhibition effect of 2,4,6-tris (2-pyridyl)-1,3,5-triazine on corrosion of tin, indium and tin–indium alloys in hydrochloric acid solution, Corros. Sci., 52. 1976-1984. 2010.View Article
 
[29]  Cao, C., On electrochemical techniques for interface inhibitor research, Corr. Sci., 38. 2073-2082,. 1996.View Article
 
[30]  Abd El-Lateef, H. M., Aliyeva, L. I., Abbasov, V. M., Ismayilov, T. I.,“Corrosion inhibition of low carbon steel in CO2 -saturated solution using Anionic surfactant, Advances in Applied Science Research, 3(2). 1185-1201. 2012.
 
[31]  Abbasov, V. M., Abd El-Lateef, H. M., Aliyeva, L. I., Qasimov, E. E., Ismayilov, I. T., LPR Corrosion Rate, Weight Loss Measurements and SEM Studies of the Effect of the Some Novel Surfactants as Corrosion Inhibitors for Carbon Steel in CO2 -Saturated 1% NaCl Solutions, Journal of Surfaces and Interfaces of Materials, 1, 1-11, 2012.
 
[32]  Badawi, A.M., Hegazy, M.A., El-Sawy, A.A., Ahmed, H.M., Kamel, W.M., Mater. Chem. Phys., 124. 458-465. 2010.View Article
 
[33]  Abdallah, M., Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution, Corros. Sci., 44. 717-728. 2002.View Article
 
[34]  Szklarska-Smialowska, Z., Corros. Sci., 18. 97-101. 1978.View Article