Open Access Peer-reviewed

Cooling System Economy in Ethanol Production Using Thermotolerant Yeast Kluyveromyces Sp. IIPE453

Sachin Kumar1, 2, 3,, Pratibha Dheeran2, 4, Surendra P. Singh5, Indra M. Mishra3, Dilip K. Adhikari2

1Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, India

2Biotechnology Area, Indian Institute of Petroleum, Dehradun, India

3Department of Chemical Engineering, Indian Institute of Technology, Roorkee, India

4SRM Research Institute, SRM University, Kattankulathur, Tamilnadu, India

5Department of Paper Technology, Indian Institute of Technology, Roorkee, Saharanpur Campus, India

American Journal of Microbiological Research. 2013, 1(3), 39-44. DOI: 10.12691/ajmr-1-3-1
Published online: August 25, 2017

Abstract

The growth of thermotolerant/ thermophilic ethanol producing yeast and the fermentation processes using sugary substrates are exothermic processes. If the fermenters are heat insulated, the requirement of heat for maintaining the fermentation broth for ethanol production may be reduced considerably. The heat generated due to growth of thermotolerant yeast Kluyveromyces sp. IIPE453 was found to be 652kJ mol-1 at 50°C using glucose as a substrate. The heat generated due to ethanol formation by Kluyveromyces sp. IIPE453 was found to be 132.54kJ mol-1 of sugar consumed or 67.84kJ mol-1 of ethanol produced at 50°C using sugarcane molasses as substrate. This heat would be sufficient for maintaining the desired temperature, if insulated fermentation systems are used. Therefore, no additional heat would be required to maintain the temperature in fermentation process by thermotolerant yeast at 50°C.

Keywords:

metabolic heat, bioreactor, ethanol fermentation, thermotolerant yeast, cooling water
[1]  Kosaric, N, “Ethanol- potential source of energy and chemical products,” In: Rehm HJ, Reed G (eds) Biotechnology, Vol 6, Products of Primary Metabolism, 2nd edn. VCH Publishers Inc, Germany, 121-203, 1996.
 
[2]  Abdel-Fattah, W.R., Fadil, M., Nigam, P. and Banat, I.M, “Isolation of thermotolerant ethanlogenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery,” Biotechnology and Bioengineering, 68 (5), 531-535, Jun.2000.View Article
 
[3]  Lin, Y. and Tanaka, S, “Ethanol fermentation from biomass resources: current state and prospects,” Applied Microbiology and Biotechnology, 69(6), 627-642, Feb.2006.View Article  PubMed
 
[4]  Phisalaphong, M., Srirattana, N. and Tanthapanichakoon, W, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochemical Engineering Journal, 28(1), 36-43, Feb.2006.View Article
 
[5]  Kumar, S., Singh, S.P., Mishra, I.M. and Adhikari, D.K, “Recent advances in production of bioethanol from lignocellulosic biomass,” Chemical Engineering and Technology, 32(4), 517-726, Apr.2009.View Article
 
[6]  Anderson, P.J., McNeil, K. and Watson, K, “High-efficiency carbohydrate fermentation to ethanol at temperatures above 40°C by Kluyveromyces marxianus var. marxianus isolated from sugar mills,” Applied and Environmental Microbiology, 51(6), 1314-1320, Jun.1986. PubMed
 
[7]  Lynd, L.R, “Production of ethanol from lignocellulosic materials using thermophilic bacteria: Critical evaluation of potential and review,” In: Fiechter A (ed) Advances in Biochemical Engineering/Biotechnology, Vol 38, Lignocellulosic Materials, Springer, New York, 1-52, 1989.
 
[8]  Banat, I.M., Nigam, P., Singh, D., Marchant, R. and McHale, A.P, “Review: Ethanol production at elevated temperatures and alcohol concentrations: Part I - Yeasts in general,” World Journal Microbiology and Biotechnology, 14(6), 809-821, Nov.1998,View Article
 
[9]  Sree, N.K., Sridhar, M., Rao, L.V. and Pandey, A, “Ethanol production in solid substrate fermentation using thermotolerant yeast,” Process Biochemistry, 34(2), 115-119, Feb.1999.View Article
 
[10]  Koskinen, P.E.P., Beck, S.R., Örlygsson, J. and Puhakka, J.A, “Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from icelandic geothermal areas,” Biotechnology and Bioengineering, 101(4), 679-690, Nov.2008.View Article  PubMed
 
[11]  Lee, J, “Biological conversion of lignocellulosic biomass to ethanol,” Journal of Biotechnology, 56, 1-24(1), Jul.1997.
 
[12]  Limtong, S., Sringiew, C. and Yongmanitchai, W, “Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus,Bioresource Technology, 98(17), 3367-3374, May.2007.
 
[13]  Plesser, T., Müller, S.C., Hess, B., Lamprecht, I. and Schaarschmidt, B, “Periodic heat production by oscillating glycolysis in a cytoplasmic medium extracted from yeast,” FEBS Letters, 189(1), 42-44, Sep.1985.View Article
 
[14]  von Stockar, U., Duboc, P., Menoud, L. and Marison, I.W, “On-line calorimetry as a technique for process monitoring and control in biotechnology,” Thermochimca Acta, 300 (1-2), 225-236, Oct.1997.View Article
 
[15]  Meier-Schneiders, M. and Schäfer, F, “Quantification of small enthalpic differences in anaerobic microbial metabolism a calorimetry-supported approach,” Thermochimca Acta, 275(1), 1-16, Apr.1996.View Article
 
[16]  Theerarattananoon, K., Lin, Y.H. and Peng, D.Y, “Metabolic heat evolution of Saccharomyces cerevisiae grown under very-high-gravity conditions,” Process Biochemistry, 43(11), 1253-1258, Nov.2008.View Article
 
[17]  Türker, M, “Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations,” Thermochimca Acta, 419(1-2), 73-81, Sep.2004.View Article
 
[18]  Chongvatana, P, “Cooling system in ethanol plant with starch base feedstock,” ASHARE Thailand Chapter Journal, 1, 30-33, 2007-2008.
 
[19]  Kumar, S., Singh, S.P., Mishra, I.M. and Adhikari, D.K, “Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453,” Journal of Industrial Microbiology and Biotechnology, 36(12), 1483-1489, Dec.2009.View Article  PubMed
 
[20]  Kumar, S., Singh, S.P., Mishra, I.M. and Adhikari, D.K, “Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453,” Biofuels, 1(5), 697-704, Sep.2010.View Article
 
[21]  Colombié, S., Malherbe, S. and Sablayrolles, J.M, “Modeling of heat transfer in tanks during wine-making fermentation,” Food Control, 18(8), 953-960, Aug.2007.View Article
 
[22]  Lienhard, J.H. and Leinhard, J.H, A heat transfer textbook, Phlogiston Press Cambridge, Massachusetts, USA, 2004.
 
[23]  Khatiwada, D. and Silveira, S, “Net energy balance of molasses based ethanol: The case of Nepal,” Renewable and Sustainable Energy Reviews, 13(9), 2515-2524, Dec.2009.View Article