Open Access Peer-reviewed

Numerical Study of Multi-Fuel Jet Inverse Diffusion Flame

Nadjib. Ghiti1,, Abed Alhalim. Bentebbiche1, Samir. Hanchi2

1Laboratoire de Mécanique Avancée-LMA,USTHB, Elia, Bab-Ezzouar, Alger, Algeria

2Laboratoire de Mécanique des Fluides, EMP, Bordj El Bahri, Alger, Algeria

American Journal of Mechanical Engineering. 2013, 1(4), 76-81. DOI: 10.12691/ajme-1-4-1
Published online: August 25, 2017

Abstract

A numerical simulation was performed to investigate a multi-jet inverse methane diffusion flame. The numerical simulation was established by the commercial CFD code Fluent for an air jet surrounding by four fuel jets. Using a Pre PDF technique to estimate the interaction between the chemistry and turbulent flow. The simulation results show a better data of the flame temperature field characteristics and the CO, CO2, NO H2O, CH4, O2 concentrations. The influence of the velocity of the fuel and air jet on the NO production is appearing very clear.

Keywords:

methane, turbulent, diffusion flame, fluent, burner
[1]  C.J. Hoogendoorn, Cz.O. Popiel, Th.H. van der Meer, Turbulent heat transfer on a plane surface in impingement round premixed plate jets, Int. Heat Transfer Conf. (1978) 107-112.
 
[2]  J.E. Anderson, E.F. Stresino, Heat transfer from flames impinging on flat and cylindrical surfaces, J. Heat Transfer 85 (1963) 49-54.View Article
 
[3]  R. Viskanta, Heat transfer to impinging isothermal gas and flame jets, Exp. Thermal Fluid Sci. 6 (1993) 111-134.View Article
 
[4]  R. Viskanta, Convective and radiative flame jet impingement heat transfer, The Ninth International Symposium on Transport Phenomena in Thermal-Fluids Engineering (1996) 46-60.
 
[5]  C.E. Baukal, B. Gebhart, A review of flame impingement heat transfer studies – Part 1: Experimental conditions, Combust. Sci. Technol. 104 (1995) 339-357.View Article
 
[6]  C.E. Baukal Jr., B. Gebhart, A review of empirical flame impingement heat transfer correlations, Int. J. Heat Fluid Flow 17 (1996) 386-396.View Article
 
[7]  S. Chander, A. Ray, Flame impingement heat transfer: a review, Energy Convers. Manage. 46 (18–19) (2005) 2803-2837.View Article
 
[8]  J.K. Kilham, M.R.I. Purvis, Heat transfer from hydrocarbon–oxygen flames, Combust. Flame 16 (1971) 47-54.View Article
 
[9]  T.H. van der Meer, Stagnation point heat transfer from turbulent low Reynolds number jets and flame jets, Exp. Thermal Fluid Sci. 4 (1991) 115-126.View Article
 
[10]  A. Milson, N.A. Chigier, Studies of methane and methane–air flames impinging on a cold plate, Combust. Flame 21 (1973) 295-305.View Article
 
[11]  L.L. Dong, C.S. Cheung, C.W. Leung, Heat transfer from an impinging premixed butane/air slot flame jet, Int. J. Heat Mass Transfer 45 (5) (2002) 979-992.View Article
 
[12]  K. Kataoka, H. Shundoh, H. Matsuo, Convective heat transfer between a flat plate and a jet of hot gas impinging on it, Drying 84 (1984) 218-227.
 
[13]  K. Kataoka, Optimal nozzle-to-plate spacing for convective heat transfer in nonisothermal, variable-density impinging jets, Drying Technol. 3 (2) (1985) 235-254.View Article
 
[14]  G.K. Hargrave, M. Fairweather, J.K. Kilham, Forced convective heat transfer from premixed flames-Part 1: Flame structure, Int. J. Heat Fluid Flow 8 (1) (1987) 55-63.View Article
 
[15]  G.K. Hargrave, M. Fairweather, J.K. Kilham, Forced convective heat transfer from premixed flames-Part 1: Impingement heat transfer, Int. J. Heat Fluid Flow 8 (2) (1987) 132-138.View Article
 
[16]  Theo van der Meer, Heat transfer from impinging flame jets, Ph.D. Thesis, 1987, the Delft University, Netherland.
 
[17]  H. Kremer, E. Buhr, R. Haupt, Heat Transfer from Turbulent Free- Jet Flames to Plate surfaces (1973) 463-472.
 
[18]  L.L. Dong, C.W. Leung, C.S. Cheung, Heat transfer characteristics of premixed butane/air flame jet impinging on an inclined flat surface, Heat Mass Transfer 39 (2002) 19-26.View Article
 
[19]  S.G. Tuttle, B.W. Webb, M.Q. Mcquay, Convective heat transfer from a partially premixed impinging flame jet. Part 1: Time-averaged results, Int. J. Heat Mass Transfer 48 (7) (2005) 236-1251.
 
[20]  S.G. Tuttle, B.W. Webb, M.Q. Mcquay, Convective heat transfer from a partially premixed impinging flame jet. Part 2: Time-resolved results, Int. J. Heat Mass Transfer 48 (7) (2005) 1252-1266.View Article
 
[21]  L.L. Dong, C.W. Leung, C.S. Cheung, Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets, Int. J. Heat Mass Transfer 47 (3) (2004) 489-500.View Article
 
[22]  L.L. Dong, C.W. Leung, C.S. Cheung, Heat transfer of a row of butane/air flame jets impinging on a flat plate, Int. J. Heat Mass Transfer 46 (2003) 113-125.View Article
 
[23]  S. Chander, A. Ray, Heat transfer characteristics of three interacting methane/air flame jets impinging on a flat surface, Int. J. Heat Mass Transfer 50 (3-4) (2007) 640-653.View Article
 
[24]  G.K. Malikov, D.L. Lobanov, Y.K. Malikov, V.G. Lisienko, R. Viskanta, A.G. Fedorov, Experimental and numerical study of heat transfer in a flame jet impingement system, J. Inst. Energy 72 (1999) 2-9.
 
[25]  W.P. Partridge, N.M. Laurendeau, Nitric oxide formation by inverse diffusion flames in staged-air burners, Fuel 74 (10) (1995) 1424-1430.View Article
 
[26]  B. Fleck, Experimental and Numerical Investigation of the Novel Low-NOx Industrial Burner, Ph.D. Thesis, Queen’s University, 1998.
 
[27]  N. Zuckerman and N. Lior “Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling” Advances In Heat Transfer Vol. 39
 
[28]  Zhen HS, Choy YS, Leung CW, Cheung CS. Effect of nozzle length on the flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl. Energy 2011; 88:2917-24.View Article