Syncope in a Previously Healthy Young Adult: Undiagnosed Aortic Stenosis, Dilation and Coarctation Requiring Emergent Surgery

Edlira Rruci¹, Andi Kaçani², Gentian Vyshka¹,*, Efrosina Kajo²

¹Biomedical and Experimental Department, Faculty of Medicine, University of Medicine in Tirana, Albania
²Service of Cardiac Surgery, University Hospital Centre “Mother Theresa”, Tirana, Albania
*Corresponding author: gyshka@yahoo.com

Received November 04, 2014; Revised November 20, 2014; Accepted November 26, 2014

Abstract
Aortic stenosis is a valvular heart disease that needs particular attention; due to the fact that asymptomatic patients may go undiagnosed for periods of time long enough to cause severe morbidity. On the other hand, aortic stenosis frequently is accompanied with other cardiac pathologies, such as a post-stenotic dilation, and coarctation. Imputed as a possible causative factor for sudden cardiac death, among other, aortic stenosis is a common finding in the setting of a bicuspid valve. We present the case of a previously young adult that suffered an episode of syncope during a football game. Exertion and sport activities are well-known situations that might provoke an abrupt manifestation of the latent valvular pathology. We dealt with an aortic stenosis of severe grade, accompanied with dilation and coarctation of aorta, in an individual with bicuspid aortic valve. A major heart surgery intervention was performed, with replacement of the valve, correction of the dilated arch and removal of the coarcted segment. Close follow-ups and monitoring are warranted even in asymptomatic patients, when the stenosis is uncovered as an incidental finding, during routine checkups.

Keywords: Aortic stenosis, left ventricular hypertrophy, dilation of aorta, coarctation, bicuspid aortic valve, syncope


1. Introduction

Aortic stenosis (AS) is a relatively frequent valvular heart disease that causes important hemodynamic problems, related to the obstruction of the blood outflow from the left ventricle. Bicuspid valves are a common finding in younger patients presenting with aortic stenosis. The condition seems congenital, with males affected predominantly, and with an overall prevalence of 1-2% [1]. Bicuspid aortic valve (BAV) is responsible for high frequency of aortic wall abnormalities, and aortic dilation seems to be so importantly present, to warrant corrective interventions. BAV patients with a high risk of aortic complications have been identified, among which those with aortic coarctation (corrected or not), with aortic stenosis, with severe valvular dysfunction or systemic hypertension, and individuals with positive familiar history for aortic dissection or rupture [2].

The impairment of cusp opening in the setting of AS will lead to a pressure overload, with a compensatory left ventricular hypertrophy (LVH), followed from a fall in the ventricular compliance [3]. Angina may result from the increased wall stress (especially in the setting of a hypertrophied myocardial tissue), and the situation might progress to heart failure if the systolic function of the left ventricle declines progressively. These occurrences are not the only one accompanying BAV complicated with valve stenosis; in fact the list is much longer, with coarctation of aorta, coronary arteries anomalies, aneurysm of sinus of Valsalva and of the ascending aorta, and other congenital heart defects [4].

Valve stenosis and its severity is an important parameter to be carefully evaluated and quantified. Gorlin formula calculated the valve area from the ratio of the cardiac output to the square root of the valve gradient; normal values suggested for the aortic valve arise from 2.5 to 3.5 cm², and the validity of this formula remains unaltered more than sixty years after the first application [5]. Echocardiography is an important and reliable diagnostic tool when professionally performed, since it allows the evaluation of the presence and of the severity of AS, and other concomitant anomalies [6]. Cardiac catheterization is feasible as well, but the valve might be impossible to cross when critically diseased, and the risk of embolic stroke following the procedure cannot be underemphasized [7].

2. Case Report
A Caucasian male aged 35 years old was referred to the Service of Cardiac Surgery, Tirana, following the advice of a previous cardiologist consultancy. The individual had an event described as syncope two days before presenting in our service, during a leisure time football match. The suspicion of an aortic stenosis was made after cardiac auscultation, and he underwent a thorough diagnostic procedure.

The findings of a trans-thoracic echocardiography were highly suggestive for BAV and of a severe AS with a gradient of 60 mmHg (sources define as severe stenosis all gradients surpassing 40 mmHg) [8]. The findings were further elaborated through trans-esophageal echocardiography, and summarized in the image below (Figure 1).

BAV existence was confirmed in the trans-esophageal echocardiography, and severe and progressive post-stenotic dilation of structures was observed (+ diameter = 2.86 cm [aortic ring]; X diameter = 4.29 cm [aortic bulb]; O diameter = 4.88 cm [sinotubular junction]; □ diameter = 6.11 cm [ascending aorta]). The over-mentioned and registered figures were abundantly above the normal values suggested from several sources [9,10,11].

The co-existence of a clearly dilated ascending aorta, with a stenotic bicuspid valve, required further diagnostic clarification, and a computed tomography angiographic study was performed (angio-CT of the aorta). The CT study suggested a dilation of the ascending aorta with a diameter up to 7 centimeters; a massive reduction of the latter up to 1.8 centimeters followed immediately after the origin of the subclavian artery. The descending aorta reached a diameter of 4.5 centimeters, with a progressive decrease of this parameter, which equaled 2.7 centimeters close to the diaphragm (Figure 2 and Figure 3, respectively left insets).

This combination of a BAV, severe aortic stenosis, dilation of aorta, and coarctation of the latter immediately after the origin of the subclavian artery, warranted the immediate necessity for a surgical correction.

The operation consisted in a median sternotomy, with replacement of the aortic valve with a mechanical prosthesis SJM no. 25 (St. Jude mechanical valve), a type of prosthesis considered widely reliable and with excellent long-term results [12]. These two important operative steps are shown in the Figure 4 (left and right inserts). The ascending aorta was replaced with an Allograft tube prosthesis no. 32 completed with suture line reinforcements as suggested from sources [13]. The aortic arch and the coarctation area were revised and 5-6 centimeters distally from the origin of the left subclavian artery was detected a membrane which narrowed the lumen of the aorta. The narrowing membrane was removed and a Dacron patch was inserted in situ covering the entire segment of the coarcted aorta, which hereby regained its normal diameter. Worth mentioning is that some authors recommend patches composed from other material; nevertheless all of those, including Dacron patches, have advantages and drawbacks of their own [14].

The surgical intervention ended up uneventfully; the patient was discharged home eleven days after the operation, with oral anticoagulants (Warfarin) in the maintenance therapy. Monthly clinical and echography follow-ups have shown a stable improvement of the general condition, and cardiac function parameters within normality.
3. Discussion

We dealt with a case of syncope in a previously young adult, an episode that was clearly stress-provoked (during a football game). The differential diagnosis of syncope is extremely detailed and out of the scope of the present paper; however, the clinical and radiological images of a combined BAV, AS, post-stenotic dilation of aorta, and coarctation were highly suggestive of a serious medical condition. Such a combination (BAV, AS, dilation of aorta and coarctation) is reported in the casuistics, and mutual influences in between the valve morphological characteristics with the presence, severity and outcome of aortic dilation or coarctation have been scrutinized [15,16].

Asymptomatic AS is not a rare condition; from the moment AS becomes symptomatic, authors suggest an average survival of less than 2-3 years. Indications for surgery are angina, CHF and syncope, but treating clinicians should take into account the clear influence and correlation between AS and the risk of sudden cardiac death [17]. Another controversy when detecting occasionally an asymptomatic AS is related with the unclear character of the progression of the disorder [18]. Worries regarding sports activity in patients with BAV and the potential of the latter for unleashing potentially fatal cardiac disorders have been formulated [19].

In all cases, a careful monitoring is warranted, particularly in patients with previous fainting episodes, with a positive family history for aortic diseases, or in particular physiological situations such as pregnancy [20]. In a recent publication of our centre’s data, we compared the results of aortic surgery between two subgroups of patients, the second of which had a simultaneous coronary artery bypass graft; meanwhile the first subgroup had aortic valve surgery alone, concluding that a combined surgical intervention did not affect the long-term results of either from the procedures [21]. When it comes to surgical approaches, there is however a consistent trend of increasing lower morbidity and mortality, even for interventions of a major importance, such as the aortic surgery. This optimistic overview has led to conceptual changes as well: fast-track elective open aortic surgery, with minimally invasive surgery and anesthesia, early oral feeding and ambulation, is advocated as another valid option, with similar good results [22].

Abbreviations

AS (aortic stenosis); LVH (left ventricular hypertrophy); BAV (bicuspid aortic valve); CHF (cardiac heart failure).

References