On Weak Solutions of Systems of Strongly Nonlinear Parabolic Variational Inequalities

A.T. El-Dessouky*

Mathematics Department, Helwan University, Faculty of Science, Cairo, Egypt
*Corresponding author: adeltohamy60@gmail.com

Abstract In this paper we prove the existence of weak solutions for systems of variational inequalities of strongly nonlinear parabolic operators:
\[u_t^{(i)} + A^{(i)}(u)(x,t) + g^{(i)}(x,t;u^1,...,u^d) \in Q = \Omega \times (0,T), \]
where \[A^{(i)}(u)(x,t) = \sum_{|\alpha| \leq m}(1)\partial^{\alpha} A_{\alpha}^{(i)}(x,t;D(u^1(x,t),...,u^d(x,t))), \]
\[\ell = 1,2,...,d. \]

Keywords: strongly nonlinear parabolic operators-Systems of variational inequalities

1. Introduction

Consider the parabolic initial-boundary value problem
\[u_t + A(u)(x,t) + g(x,t;u) = f(x,t), \]
in \[Q = \Omega \times (0,T), \]
\[u(0) = 0, \]
in \[\Omega \]
\[D^\alpha u = 0 \text{ on } \partial \Omega \times (0,T) \text{ for } |\alpha| \leq m - 1 \]
where
\[A(u)(x,t) = \sum_{|\alpha| \leq m}(1)\partial^{\alpha} A_{\alpha}(x,t) \]
and \[Du = (D^\alpha u)_{|\alpha| \leq m}. \]
If the coefficients \[A_{\alpha} \] satisfy a polynomial growth conditions of order \(p \) in \(u \) and its space derivatives but \(g \) obeys no growth in \(u \), but merely a polynomial growth conditions of order \(p - 1 \) in \(u \) and its time derivative, the existence of weak solutions problems of the type (1) has been obtained by many authors (cf [1,4] and [5]). In [2] Browder and Brézis extended the above results to the corresponding class of variational inequalities. Their proof based on a type of compactness result. Our result can be viewed as a generalization to systems of variational inequalities for the work of [4] and [5]. Our proof relies on deriving a-priori bound for the time derivative of the solution in \(L^2(Q) \).

2. Prerequisites

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \) with a smooth (uniform \(C^m \)) boundary, \(1 < p < \infty \) and \(m \) a positive integer. Denote by \(V = V^1 \times ... \times V^d \)
the Sobolev space
\[\|v\|_{m,p} = \|v\|_X + \|D^\alpha v\|_{X^*}, \]
\[\|v\|_p = \frac{1}{p} \int_Q \sum_{i=1}^d \sum_{|\alpha| \leq m} \partial^{\alpha} A_{\alpha}^{(i)}(x,t) u(x,t)^p dx. \]

For the Galerkin method, construct a sequence \((w_i^{(i)})_{i=1}^\infty \subset \{C_0^0(\Omega)\}^d \) such that \(\bigcup_{i=1}^\infty \mathbb{Z}_n^{(i)} \) is dense in \(\{W_0^{1,p}(\Omega)\}^d \), \(j \geq p + m + N \). Denote by \(Y_n = C(\Omega) \times \mathbb{Z}_n^{(1)} \times ... \times \mathbb{Z}_n^{(d)} \).
Since \(\{W_0^{1,p}(\Omega)\}^d \) is continuously embedded in \(\{C_0^0(\Omega)\}^d \), which is a Banach space with the norm
\[\|v\|_{C_0^0(\Omega)}^d = \sum_{i=1}^d \max_{0 \leq |\alpha| \leq m} \sup_{x \in \Omega} |\partial^{\alpha} u^{(i)}(x)|, \]
then for any \(v \in \{W_0^{1,p}(\Omega)\}^d \) there exists a sequence \((v_k) \subset U \) such that \(v_k \to v \) in \(\{W_0^{1,p}(\Omega)\}^d \). Moreover, since the closure of \(\bigcup_{n=1}^\infty Y_n \) in \(\{C_0^0(\Omega)\}^d \), the set \(\mathbb{Z}_n^{(1)} \times ... \times \mathbb{Z}_n^{(d)} \) contains \(\{C_0^0(\Omega)\}^d \), then for any \(f \in \mathbb{X} \) there exists a sequence \((f_k) \subset \mathbb{X} \) such that \(f_k \to f \) in \(\mathbb{X} \) in the weak sense [5].

We introduce the following hypotheses for \(A^{(i)}(u) + g^{(i)}(x,t,u) \).

On Weak Solutions of Systems of Strongly Nonlinear Parabolic Variational Inequalities
A1) $A_{\alpha}^{(t)}: \mathbb{Q} \times \mathbb{R}^d \to \mathbb{R}$ is continuous in $\xi \in \mathbb{R}^d$ for almost all $(x,t) \in \mathbb{Q}$ and $c_1 > 0$ and a fixed function $K_1 \in L^p(Q)_d$

$$
\left| A_{\alpha}^{(t)}(x,t;\xi) \right| \leq c_1 \left| \xi \right|^{p-1} + K_1(x,t),
$$

for all α, all $(x,t) \in \mathbb{Q}$, $\ell = 1, 2, \ldots, d$ and all $\xi \in \mathbb{R}^d$.

A2) For all $(x,t) \in \mathbb{Q}$ and two distinct $\xi, \xi' \in \mathbb{R}^d$

$$
\sum_{i=1}^d \sum_{j=0}^m \left| \partial_j A_{\alpha}^{(t)}(x,t;\xi) - \partial_j A_{\alpha}^{(t)}(x,t;\xi') \right| (\xi_i^{(t)} - \xi'^{(t)}_i) > 0.
$$

A3) There exists a constant $c_2 > 0$ and a fixed function $K_2 \in L^\infty(Q)_d$ such that for all $(x,t) \in \mathbb{Q}$ and all $\xi \in \mathbb{R}^d$

$$
\sum_{i=1}^d \sum_{j=0}^m \left| \partial_j A_{\alpha}^{(t)}(x,t;\xi) \right| (\xi_i^{(t)})^{(t)} \geq c_2 \left| \xi \right|^p - K_2(x,t).
$$

G) $g^{(t)}: \mathbb{Q} \times \mathbb{R}^d \to \mathbb{R}$ is continuous in $\xi \in \mathbb{R}^d$ for almost all $(x,t) \in \mathbb{Q}$ and measurable in (x,t) for all $r, r' \in [0, T]$. Moreover, each $g^{(t)}$ is nondecreasing in r for fixed $(x,t) \in \mathbb{Q}$ and each $g^{(t)}(x,t;0) = 0$, for all $(x,t) \in \mathbb{Q}$.

3. Formulation of the Problem

Write

$$
G_0^{(t)}(x,t,r) = \int_0^r g^{(t)}(x,t,s)ds.
$$

By G) each $G_0^{(t)}$ as a function of r is convex, nonnegative and once differentiable.

For $u \in X$, set

$$
\Gamma^{(t)}(u) = \int \Omega G_0^{(t)}(x,t,u)dxdt.
$$

Let K be a closed convex subset of V containing the origin. Define a proper lower semicontinuous Gateaux differentiable function $\phi^{(t)}: X \to (-\infty, \infty]$:

$$
\phi^{(t)}(u) = \begin{cases}
\Gamma^{(t)}(u) & \text{if } u(t) \in K \text{ a.e.} \
\infty & \text{otherwise.}
\end{cases}
$$

Definition: A function $u_0 = (u_0^{(t)}, \ldots, u_n^{(t)}) \in \mathbb{Y}_n$ is called a Galerkin solution of the associated variational inequalities for (1) if

$$
\begin{align*}
\int_0^T \left[\frac{\partial u_n^{(t)}}{\partial t}, v^{(t)} - u_n^{(t)} \right] dt + \int_0^T \left[T(u_n), v^{(t)} - u_n^{(t)} \right] dt \\
+ \phi^{(t)}(v) - \phi^{(t)}(u_n) \\
\geq \int_0^T \left[I_n^{(t)}, v^{(t)} - u_n^{(t)} \right] dt, \\
v \in \mathbb{Y}_n, \ell = 1, 2, \ldots, d.
\end{align*}
$$

where

$$
\left[T(u), z^{(t)} \right] = \int \Omega \sum_{i=1}^d \sum_{j=0}^m A_{\alpha}^{(t)}(x,t,Du) D^jz^{(t)}dx.
$$

The existence of a Galerkin solution and its main property, in view of our hypotheses, will be given by the following lemma [3].

Lemma: For every $n \in \mathbb{N}$ there exists a Galerkin solution $u_0 \in \mathbb{Y}_n \cap X$ such that

$$
\| u_0 \|_{L_2} \leq c(n \in \mathbb{N}).
$$

4. Existence Theorem

Theorem. Let the hypotheses A_1- A_3 and G) be satisfied. Let $f^{(t)} \in C^1(0,T; L^2(\Omega))$ be given. Then

(i) there exists $u \in \mathbb{Y}$ with $u(t) \in K$ a.e., $u(0) = 0$ such that

$$
< u^{(t)}, v^{(t)} - u^{(t)} > + < T(u), v^{(t)} - u^{(t)} > + \phi^{(t)}(v) - \phi^{(t)}(u) \geq 2\phi^{(t)}(u) > 0,
$$

for every $v \in C^1(0,T; L^2(\Omega))$ for which $\phi^{(t)}(v) < \infty$.

(ii) there exists $u \in \mathbb{Y} \cap K$ with $u(t) \in K$ a.e., $u(0) = 0$ such that

$$
< u^{(t)}, v^{(t)} - u^{(t)} > + < T(u), v^{(t)} - u^{(t)} > + \phi^{(t)}(v) - \phi^{(t)}(u) \geq 2\phi^{(t)}(u) > 0,
$$

for every $v \in C^1(0,T; L^2(\Omega))$ for which $\phi^{(t)}(v) < \infty$.

Including the existence of a solution

$$
\xi(t) = (\xi^{(t)}(1), \ldots, \xi^{(d)}(d)) \in \mathbb{Y}_n.
$$
for every \(v \in C^1(0,T,\mathbb{R}^d) \) with \(u(t) \in \text{K.a.e.} \). Proof of (i): By the above lemma, there exist Galerkin solutions \(u_n \in Y_n \) of (2) such that
\[
\left\| u_n(t) \right\|_2 \leq c.
\]

Set \(\nu=0 \) in (2) we get the uniform boundedness from above of the numerical sequence \(\{ \left(T(u_n), u_{n}^{(t)} \right) \}_{n \in \mathbb{N}} \). The proof will follow if we can show the following assertions for some subsequence of \((u_n) \):
\[
\frac{\partial u_{n}^{(t)}}{\partial t} \to u_{l}^{(t)} \text{ weakly in } L^{2}(Q),
\]
\[
u_{n} \to u \text{ weakly in } X \text{ and strongly in } L^{p}\left(0,T,[W^{m-1,p}(\Omega)]^{d}\right),
\]
\[
<T(u_n),z^{(t)}> \to <T(u),z^{(t)}>, \forall z^{(t)} \in C_{0}^{\infty}(Q) \]
\[
\liminf_{n} <T(u_n),u_{n}^{(t)}> \geq <T(u),u_{l}^{(t)}>, \forall n \in \mathbb{N}
\]

and
\[
-\infty < \phi^{(l)}(u) \leq \liminf_{n} \phi^{(l)}(u_n) < \infty.
\]

To show (4): Given \(\epsilon > 0 \), any \(n \in \mathbb{N} \) and any \(w_n = (w_{n}^{(t)}, ... ,w_{n}^{(t)}) \in Y_n \), put
\[
w_{n}^{(t)} = \frac{u_{n}^{(t)} - v^{(t)}}{\epsilon}.
\]

Since \(v^{(t)} \) is arbitrary, \(w_{n}^{(t)} \) is absolutely for a given \(u_{n}^{(t)} \). Then (2) yields
\[
\left\{ \frac{\partial u_{n}^{(t)}}{\partial t}, w_{n}^{(t)} \right\} + \left\{ T(u_n), w_{n}^{(t)} \right\} = \frac{1}{\epsilon} \left[\phi^{(t)}(u_n(t)) - \epsilon w_n(t) + \phi^{(t)}(u_n(t)) \right]
\]
\[
\leq \left(f_{n}^{(t)}(t), w_{n}^{(t)}(t) \right).
\]

In particular, since \(w_{n}^{(t)} \) is arbitrary we can write (9) in the form
\[
\left(\frac{\partial u_{n}^{(t)}}{\partial t} - \frac{u_{n}^{(t)}(t+\epsilon) - u_{n}^{(t)}(t)}{-\epsilon} \right) - T(u_n(t)) \frac{u_{n}(t+\epsilon) - u_{n}(t)}{-\epsilon} \leq \frac{\phi^{(t)}(u_n(t)) - \epsilon \frac{\partial u_{n}(t)}{\partial t} - \phi^{(t)}(u_n(t))}{-\epsilon}.
\]

\[\text{Allowing } \epsilon \to 0, \text{we get}
\]
\[
\left\{ \frac{\partial u_{n}^{(t)}}{\partial t}, f_{n}^{(t)}(t), \frac{u_{n}(t+\epsilon) - u_{n}(t)}{-\epsilon} \right\} \leq \left(\frac{\partial u_{n}^{(t)}}{\partial t}, f_{n}^{(t)}(t), \frac{u_{n}(t+\epsilon) - u_{n}(t)}{-\epsilon} \right).
\]

where \(\phi^{(t)}(u) \) is the Gateaux derivative of \(\phi(u) \) at \(u_{n}(t) \). Similarly, from (2), we get
\[
\left\{ \frac{\partial u_{n}^{(t)}}{\partial t} - \frac{u_{n}^{(t)}(t+\epsilon) - u_{n}^{(t)}(t)}{-\epsilon} \right\} - \frac{\partial u_{n}(t)}{\partial t} \left(u_{n}(t+\epsilon) - u_{n}(t) \right) \leq \left(\frac{\partial u_{n}^{(t)}}{\partial t}, f_{n}^{(t)}(t), \frac{u_{n}(t+\epsilon) - u_{n}(t)}{-\epsilon} \right).
\]

Therefore
\[
\| \frac{\partial u_{n}^{(t)}}{\partial t} \|_2 \leq \| f_{n}^{(t)}(t) \|_2 + \int_{0}^{T} \| \frac{\partial u_{n}(t)}{\partial t} \|_2 \| \frac{u_{n}(t+\epsilon) - u_{n}(t)}{-\epsilon} \|_2 dt + \frac{\| \phi^{(t)}(u_n(t)) \|_2}{2} \| \frac{\partial u_{n}(t)}{\partial t} \|_2.
\]

The above of the numerical sequence above of the numerical sequence
On the other hand, we get from (2)
\[
\left(\frac{\partial u_n(t)}{\partial t}, \frac{\partial u_n(t)}{\partial t} \right) + T(u_n(t), \frac{\partial u_n(t)}{\partial t}) \leq |\phi(t)(u_n(t))| \left(\left\| \frac{\partial u_n(t)}{\partial t} \right\|_2 + \left(\frac{f_n(t)}{2}, \frac{\partial u_n(t)}{\partial t} \right). \right.
\]

In particular,
\[
\left\| \frac{\partial u_n(t)}{\partial t} \right\|_2 \leq \left(\phi(t)(u_n(t)) \right) \left(\left\| \frac{\partial u_n(t)}{\partial t} \right\|_2 + \left(\frac{f_n(t)}{2}, \frac{\partial u_n(t)}{\partial t} \right). \right.
\]

From (12) and (13), we may apply Gronwall’s inequality to get the estimate
\[
\left(\left\| \frac{\partial u_n(t)}{\partial t} \right\|_2 \right)^2 \leq \text{const} \left(\| u_n(0) \|_2 \right)^2, \quad \forall n \in \mathbb{N}. \quad (14)
\]

Using A1 and G), taking Young’s inequality into account, we get
\[
\left(\left\| \frac{\partial u_n(t)}{\partial t} \right\|_2 \right)^2 \leq \text{const} \| u_n(t) \|_2^2, \quad \forall n \in \mathbb{N} \quad \text{and} \quad t \in [0, T]
\]
and (4) follows. Assertion (5) is a direct consequence of A2, G) and Aubin’s lemma. Assertion (8) follows from the lower semicontinuity of \(\phi(t) \).

To prove (6) and (7), it suffices to show
\[
\limsup_n \int_0^T T(u_n), u_n - u(t) \, dt \leq 0. \quad (15)
\]

Since for any \(v \in C^t(0, T, [C_0^\Omega(\Omega)]) \) we may find a subsequence \((v_{n_k}) = (v_{n_1}, \ldots, v_{n_k}) \subset U_n \in Y_n \) such that \(v_{n_k} \rightharpoonup u \) weakly in Y, we get from (2)
\[
\int_0^T \left(\frac{\partial u_{n_k}(t)}{\partial t}, v_{n_k}(t) \right) \, dt + \int_0^T \left(T(u_{n_k}), v_{n_k} - u(t) \right) \, dt \\
\leq \int_0^T \left(\frac{\partial u_{n_k}(t)}{\partial t}, v(t) \right) \, dt + \int_0^T \left(T(u_{n_k}), v_{n_k} - u(t) \right) \, dt \\
+ \phi(t)(v_{n_k}) - \phi(t)(u_n) - \int_0^T \left(f_n(t), v_{n_k} - u(t) \right) \, dt.
\]

Letting \(n \to \infty \), keeping \(k \) fixed, we have
\[
< u_{n_k}(t), v_{n_k}(t) > + \limsup_n \int_0^T \left(T(u_{n_k}), v_{n_k} - u(t) \right) \, dt \\
\leq \limsup_n \int_0^T \left(T(u_{n_k}), v_{n_k} - u(t) \right) \, dt \\
+ \phi(t)(v_{n_k}) - \liminf_n \phi(t)(u_n) - \int_0^T \left(f_n(t), v_{n_k} - u(t) \right) \, dt.
\]

Since the left hand side of this inequality is independent of \(k \), allowing \(k \to \infty \) we get (15) and (i) of the theorem follows. To prove (ii) little arguments are needed. For this aim, define the truncated perturbation \(g_k^{(i)}(x, t, u) \) by
\[
g_k^{(i)}(x, t, u) = \begin{cases} g^{(i)}(x, t, u) & \text{if } g^{(i)}(x, t, u) > k \\
g^{(i)}(x, t, u) & \text{otherwise.} \end{cases}
\]

From (i), there exists \(u_k \in Y \) with \(u_k(t) \in K \). e. \(u_k(0) = 0 \) such that
\[
\int_0^T \left(\frac{\partial u_k(t)}{\partial t}, v(t) - u_k(t) \right) \, dt + \int_0^T \left(T(u_k), v(t) - u_k(t) \right) \, dt \\
+ \phi_k^{(i)}(v) - \phi_k^{(i)}(u_k) \geq 0\int_0^T \left(f^{(i)}, v(t) - u_k(t) \right) \, dt,
\]
for every \(v(t) \in C^t(0, T, [C_0^\Omega(\Omega))] \) for which
\[
\phi_k^{(i)}(v) < \infty
\]
where
\[
\phi_k^{(i)}(u_k) = \int_Q G_0^{(i)}(x, t; u_k(x, t)) \, dx dt
\]
and
\[
G_0^{(i)}(x, t; r) = \int_0^r g_0^{(i)}(x, t; s) \, ds.
\]

Using the subgradient inequality for \(G_0^{(i)}(x, t; r) \) as a function of \(r \), we have
\[
\int_0^T \left(\frac{\partial u_k(t)}{\partial t}, v(t) - u_k(t) \right) \, dt + \int_0^T \left(T(u_k), v(t) - u_k(t) \right) \, dt \\
+ \int_0^T \left(g_0^{(i)}(x, t; u_k), v(t) - u_k(t) \right) \, dx dt \\
\geq \int_0^T \left(f^{(i)}, v(t) - u_k(t) \right) \, dt.
\]

The rest of the proof is more or less word for word as in (i).

Example: As an example which can be handled by our result, consider the variational inequalities associated with the following system
\[
\frac{\partial u}{\partial t}(t) - \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D\alpha \left(D^\alpha u(t) \right) u(t) - D^\alpha u(t) \quad \ell = 1, 2, \ldots, d, \quad p \geq 2.
\]

References
