The Effect of Corn Oil on the Quality Characteristics of Mayonnaise

Ghulam Rasool¹, Sarfraz Hussain², Zafar Alam³, Muhammad Suhail Ibrahim¹, ³*,

¹National Institute of Food Science and Technology
²University of Sargodha
³University of Agriculture Faisalabad
*Corresponding author: Chaudhry.suhail@yahoo.com

Received September 04, 2013; Revised October 16, 2013; Accepted November 12, 2013

Abstract Mayonnaise is semi-solid stable emulsion of vegetable oil, egg yolk or whole egg, vinegar or lemon juice, salt seasonings and sugars and dextrose. Oil is used in mayonnaise as energy source and for smooth texture. Mayonnaise was prepared by using different concentrations of corn oil (235 ml, 240 ml, 245 ml, 250 ml and 255 ml). Firstly all the ingredients were weighed by using the electrical balance. Eggs and vinegar was cooled at 10-13 c. After washing and cleaning. Eggs were deshelled. spices and eggs were blended for 2 minutes. Pouring of oil was started drop by drop at first and then remaining oil was added. Packaging was done in already hygienically cleaned bottles. The product was stores under controllable conditions. During the storage period the product was analyzed for moisture, crude protein, total ash, crude fat, and acidity. The sensory evaluation of the product was also made when stored under controlled conditions. The result of the investigation was statistically analyzed and interpreted. The present project was carried out to study the effect of corn oil on the different quality characteristics of mayonnaise. Different concentrations of corn oil were used to prepare mayonnaise samples. The mayonnaise samples were prepared by using 235 ml, 240 ml, 245 ml, 250 ml and 255 ml of corn oil. Theses samples were tested for chemical properties like moisture, crude protein, crude fat, total ash, peroxide value and acidity. Among the sensory characteristics it was evaluated for its taste, texture, flavor and overall acceptability during 40 days of storage period. The test was made after 10 days interval up to 40 days. Among chemical characteristics the effect of different oil concentration was non significant for fat and acidity. While as sensory characteristics were concerned color, flavor, taste, texture and overall acceptability decreased by increasing oil concentration. The last result was shown by the mayonnaise sample prepared by using 235 ml of corn oil. The concentration of 235 ml of corn oil showed good quality attributes especially with respect to its sensory evaluation such as color, taste, texture, flavor and overaccepectibility of mayonnaise. Mayonnaise prepared by using 235 ml of corn oil also showed good emulsion stability than others.

Keywords: mayonnaise, Physio-chemical properties, corn oil, sensory evaluation

1. Introduction

A wide variety of oil is used in the preparation of mayonnaise. The oil used in the mayonnaise and salad dressings provides a base for the rest of the ingredients. These oils are called salad oils and these oils should be refined, blached, deodorized and winterized. Salad oil should be minimum cloud point of 5.5 hours. Cloudiness is undesirable because it also looks bad and contribute waxy mouth feel. The corn oil was used in the preparation of mayonnaise. The prepared mayonnaise was studied for its sensory and physio-chemical properties for the fresh and stored mayonnaise.

Objective of the project
- To prepare the mayonnaise with standard technique by using corn oil
- To analyze the mayonnaise for consumer acceptability.
- To develop the new product without the loss of its acceptability.
- To analyze the mayonnaise for its physio-chemical characteristics.
- To analyze the mayonnaise for its sensory characteristics.
- To analyze the effect of different concentrations of corn oil(235,240,245,250 and 255ml respectively)

2. Material and Methods

For the preparation of the mayonnaise raw material including the refined sugar, common salt, mustard powder, vinegar, refined corn oil, white pepper and eggs were purchased from the local market.
2.1. Preparation of the Product

Recipe

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity (In numbers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>15 Grams</td>
</tr>
<tr>
<td>Salt</td>
<td>10 Grams</td>
</tr>
<tr>
<td>Vinegar</td>
<td>200ml</td>
</tr>
<tr>
<td>Mustard Powder</td>
<td>10 Grams</td>
</tr>
<tr>
<td>White pepper</td>
<td>0.5 Grams</td>
</tr>
<tr>
<td>Corn Oil</td>
<td>235, 240, 245, 250 and 255 ml respectively</td>
</tr>
<tr>
<td>Eggs</td>
<td>2 (In numbers)</td>
</tr>
</tbody>
</table>

2.2. Weighing of the Ingredient

The entire ingredient was weighed with the help of the electrical balance.

2.3. Cooling of the Ingredient

Eggs, Corn oil and vinegar was cooled at 10-13°C

2.4. Blending of Eggs and Spices

Materials were blended for 2-5 minutes until the mixture was become creamy.

2.5. Addition of the Vinegar:

Vinegar was added and mixture was blended for two minutes.

2.6. Pouring of Oil

Pouring of oil was done drop by drop at first until mixture become thick then remaining oil was added.

3. Analysis of the Mayonnaise

3.1. Physio-chemical Analysis

The physio-chemical analysis like moisture, crude protein, crude fat, total ash, and acidity was carried out as described in AOAC [1]. Mayonnaise was chemically and physically evaluated after 10, 20, 30 and 40 days of storage.

3.2. Sensory Evaluation

Sensory evaluation of mayonnaise was carried out for color, flavor, taste, texture and overall acceptability after 10, 20, 30 and 40 days of storage intervals [5].

3.3. Statistical Analysis

The statistical analysis of the data obtained was carried out by using analysis of variance technique as described by Steel et al. [9].

4. Result and Discussion

The present project was carried out to study the effect of corn oil on the different quality characteristics of mayonnaise. Different concentrations of corn oil were used to prepare mayonnaise samples. The mayonnaise samples were prepared by using 235 ml, 240 ml, 245 ml, 250 ml and 255 ml of corn oil. Theses samples were tested for chemical properties like moisture, crude protein, crude fat, total ash, peroxide value and acidity. Among the sensory characteristics it was evaluated for its taste, texture, flavor and overall acceptability during 40 days of storage period. The test was made after 10 days interval up to 40 days. The data about the moisture content in the product (Table 1) showed that there is no increase in the moisture content of the mayonnaise prepared by using different concentration of corn oil with passage of time.

4.1. Moisture Content

Table 1. The effect of different concentration of corn oil on the moisture of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>15.00</td>
</tr>
<tr>
<td>T2</td>
<td>15.15</td>
</tr>
<tr>
<td>T3</td>
<td>15.00</td>
</tr>
<tr>
<td>T4</td>
<td>15.80</td>
</tr>
<tr>
<td>T5</td>
<td>15.60</td>
</tr>
<tr>
<td>Mean</td>
<td>15.30</td>
</tr>
</tbody>
</table>

Comparison of treatment

Table 2. Analysis of the variance for the effect of different concentration of corn oil on the moisture of mayonnaise

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>d.f</th>
<th>S.S</th>
<th>M.S</th>
<th>F.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>4</td>
<td>0.07</td>
<td>0.018</td>
<td>0.27</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>1.09</td>
<td>0.068</td>
<td>0.37</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-significant

4.2. Ash Content

The data regarding ash content in the mayonnaise sample indicated that ash content did not increase with the passage of time.

Table 3. The effect of different concentration of corn oil on the ash of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>2.00</td>
</tr>
<tr>
<td>T2</td>
<td>1.85</td>
</tr>
<tr>
<td>T3</td>
<td>1.85</td>
</tr>
<tr>
<td>T4</td>
<td>1.85</td>
</tr>
<tr>
<td>T5</td>
<td>2.10</td>
</tr>
<tr>
<td>Mean</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Comparison of treatment
4.3. Fat content

Sensory characteristics of mayonnaise including appearance, texture, flavor and mouth feel was affected by the corn oil concentration. It is concentrated source of calories and contribute to the energy value [8]. According to US definition and standard of identity for mayonnaise, it must contain 65 % fat (Binsted et al.,1962). The statistical result indicated that results were significant for treatment and non-significant for storage.

Table 5. The effect of different concentration of corn oil on the fat of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>63.22</td>
<td>62.12</td>
<td>60.92</td>
<td>63.42</td>
<td>61.72</td>
<td>62.28</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>64.58</td>
<td>63.48</td>
<td>62.28</td>
<td>65.28</td>
<td>63.08</td>
<td>63.74</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>65.94</td>
<td>64.48</td>
<td>63.64</td>
<td>66.64</td>
<td>66.44</td>
<td>65.50</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>67.30</td>
<td>66.20</td>
<td>68.00</td>
<td>65.00</td>
<td>65.80</td>
<td>66.36</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>68.66</td>
<td>67.56</td>
<td>69.36</td>
<td>66.36</td>
<td>67.16</td>
<td>67.82</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>65.94</td>
<td>64.64</td>
<td>64.84</td>
<td>65.44</td>
<td>64.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2=By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

Table 6. Analysis of the variance for the effect of different concentration of corn oil on the fat content of mayonnaise

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>d.f</th>
<th>S.S</th>
<th>M.S</th>
<th>F.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>4</td>
<td>72.20</td>
<td>18.050</td>
<td>8.17**</td>
</tr>
<tr>
<td>Storage</td>
<td>4</td>
<td>5.34</td>
<td>1.335</td>
<td>0.60**</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>0.24</td>
<td>0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>78.80</td>
<td>19.69</td>
<td></td>
</tr>
</tbody>
</table>

Highly significant
Comparison of treatment

Table 8. Analysis of the variance for the effect of different concentration of corn oil on the protein content of mayonnaise

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>d.f</th>
<th>S.S</th>
<th>M.S</th>
<th>F.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>4</td>
<td>0.03</td>
<td>0.007</td>
<td>0.78NS</td>
</tr>
<tr>
<td>Storage</td>
<td>4</td>
<td>0.01</td>
<td>0.004</td>
<td>0.43NS</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>0.013</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-significant
Comparison of treatment

Table 4.4. Protein Content

The ANOVA revealed the effect of corn oil and storage intervals on protein content. The result showed that treatment and storage period were all non-significant. The result also confirmed the finding of Ockerman (1991) who reported up to 1 % of protein in different mayonnaise samples.

Table 7. The effect of different concentration of corn oil on the protein of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.15</td>
<td>1.00</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.00</td>
<td>1.30</td>
<td>1.15</td>
<td>1.00</td>
<td>1.00</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1.15</td>
<td>1.20</td>
<td>1.20</td>
<td>1.10</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>1.20</td>
<td>1.10</td>
<td>1.15</td>
<td>1.20</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>1.15</td>
<td>1.00</td>
<td>1.15</td>
<td>1.20</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.100</td>
<td>1.14</td>
<td>1.16</td>
<td>1.14</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2=By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

Table 9. The effect of different concentration of corn oil on the acidity of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.48</td>
<td>0.45</td>
<td>0.49</td>
<td>0.49</td>
<td>0.50</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.52</td>
<td>0.52</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.60</td>
<td>0.58</td>
<td>0.58</td>
<td>0.64</td>
<td>0.64</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.65</td>
<td>0.68</td>
<td>0.68</td>
<td>0.70</td>
<td>0.70</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>0.71</td>
<td>0.67</td>
<td>0.70</td>
<td>0.73</td>
<td>0.74</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.60</td>
<td>0.59</td>
<td>0.60</td>
<td>0.63</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2=By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

4.5. Acidity

The data regarding the acidity of the mayonnaise samples showed that acidity increased with the passage of time. After 40 days of storage maximum increase in the acidity was observed.

Table 10. The analysis of the variance for the effect of different concentration of corn oil on the acidity of mayonnaise

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>d.f</th>
<th>S.S</th>
<th>M.S</th>
<th>F.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>4</td>
<td>0.21</td>
<td>0.053</td>
<td>356.07</td>
</tr>
<tr>
<td>Storage</td>
<td>4</td>
<td>0.01</td>
<td>0.002</td>
<td>12.17</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highly significant
Comparison of treatment

3.7. Sensory Characteristics

Color is the important factor that affects aesthetic value of the food product. Mayonnaise, like other food product must in addition have good color.

Lawson (1995) reported that the appearance of color of the product is of prime importance in consumer acceptance. Booth (1999) suggested that appearance has always been recognized as major appetite stimulating and mouthwatering.

The data regarding the color score of product in table 11 revealed that color changed during storage of mayonnaise samples. The lowest mean score of 3.76 has obtained by treatment T5 with increasing oil content color of mayonnaise increasingly became unacceptable.
4.7. Flavor

Baur reported that flavor of product is considered the prime determinant in its acceptance. The flavor of oil and fat products are generally ascribed to the component of fatty acids.

Table 13. The effect of different concentration of corn oil on the flavor of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>8.1</td>
<td>7.1</td>
<td>6.2</td>
<td>5.2</td>
<td>4.2</td>
<td>6.16</td>
</tr>
<tr>
<td>T2</td>
<td>7.3</td>
<td>6.2</td>
<td>5.4</td>
<td>4.3</td>
<td>3.2</td>
<td>5.28</td>
</tr>
<tr>
<td>T3</td>
<td>6.1</td>
<td>5.2</td>
<td>4.3</td>
<td>3.2</td>
<td>3.2</td>
<td>4.4</td>
</tr>
<tr>
<td>T4</td>
<td>5.2</td>
<td>4.1</td>
<td>3.3</td>
<td>3.2</td>
<td>3.1</td>
<td>3.78</td>
</tr>
<tr>
<td>T5</td>
<td>5.3</td>
<td>4.1</td>
<td>3.2</td>
<td>3.1</td>
<td>3.1</td>
<td>3.76</td>
</tr>
<tr>
<td>Mean</td>
<td>6.4</td>
<td>5.34</td>
<td>4.48</td>
<td>3.1</td>
<td>3.36</td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2= By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

Table 14. The effect of different concentration of corn oil on the Ash content of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>9.4</td>
<td>8.1</td>
<td>7.2</td>
<td>6.1</td>
<td>5.1</td>
<td>7.8</td>
</tr>
<tr>
<td>T2</td>
<td>8.9</td>
<td>8.2</td>
<td>7.3</td>
<td>6.4</td>
<td>5.2</td>
<td>6.22</td>
</tr>
<tr>
<td>T3</td>
<td>7.3</td>
<td>6.1</td>
<td>5.4</td>
<td>4.2</td>
<td>3.3</td>
<td>5.26</td>
</tr>
<tr>
<td>T4</td>
<td>6.2</td>
<td>5.4</td>
<td>4.3</td>
<td>3.4</td>
<td>2.4</td>
<td>4.28</td>
</tr>
<tr>
<td>T5</td>
<td>5.4</td>
<td>4.5</td>
<td>3.4</td>
<td>2.3</td>
<td>2.2</td>
<td>3.56</td>
</tr>
<tr>
<td>Mean</td>
<td>7.24</td>
<td>6.24</td>
<td>5.32</td>
<td>4.24</td>
<td>3.46</td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2= By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

4.8. Taste

The ANOVA revealed the effect of treatments and storage intervals on the taste of the product Table 16. The result showed that treatment and storage intervals were highly significant.

Table 15. The effect of different concentration of corn oil on the taste of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>9.3</td>
<td>8.1</td>
<td>7.2</td>
<td>6.1</td>
<td>5.1</td>
<td>7.8</td>
</tr>
<tr>
<td>T2</td>
<td>8.9</td>
<td>8.2</td>
<td>7.3</td>
<td>6.4</td>
<td>5.2</td>
<td>6.22</td>
</tr>
<tr>
<td>T3</td>
<td>8.3</td>
<td>7.5</td>
<td>7.4</td>
<td>6.5</td>
<td>6.1</td>
<td>7.16</td>
</tr>
<tr>
<td>T4</td>
<td>7.5</td>
<td>7.3</td>
<td>6.2</td>
<td>6.1</td>
<td>5.4</td>
<td>8.5</td>
</tr>
<tr>
<td>T5</td>
<td>7.2</td>
<td>7.1</td>
<td>6.3</td>
<td>5.5</td>
<td>4.5</td>
<td>6.12</td>
</tr>
<tr>
<td>Mean</td>
<td>7.9</td>
<td>7.48</td>
<td>7.06</td>
<td>6.34</td>
<td>5.68</td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2= By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

4.9. Texture

The ANOVA revealed the results showed that the storage intervals treatments were highly significant Table 18.

Booth [1] suggested that precautions needed to be taken according to nature of food stuff concerned to avoid or minimize textural changes in foods.

Table 16. The effect of different concentration of corn oil on the texture of mayonnaise

<table>
<thead>
<tr>
<th>Storage (Days)</th>
<th>Treatment</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T1</td>
<td>9.4</td>
<td>8.1</td>
<td>7.2</td>
<td>6.1</td>
<td>5.1</td>
<td>7.8</td>
</tr>
<tr>
<td>10</td>
<td>T2</td>
<td>8.9</td>
<td>8.2</td>
<td>7.3</td>
<td>6.4</td>
<td>5.2</td>
<td>6.22</td>
</tr>
<tr>
<td>20</td>
<td>T3</td>
<td>7.3</td>
<td>6.1</td>
<td>5.4</td>
<td>4.2</td>
<td>3.3</td>
<td>5.26</td>
</tr>
<tr>
<td>30</td>
<td>T4</td>
<td>6.2</td>
<td>5.4</td>
<td>4.3</td>
<td>3.4</td>
<td>2.4</td>
<td>4.28</td>
</tr>
<tr>
<td>40</td>
<td>T5</td>
<td>5.4</td>
<td>4.5</td>
<td>3.4</td>
<td>2.3</td>
<td>2.2</td>
<td>3.56</td>
</tr>
<tr>
<td>Mean</td>
<td>T1</td>
<td>7.9</td>
<td>7.48</td>
<td>7.06</td>
<td>6.34</td>
<td>5.68</td>
<td></td>
</tr>
</tbody>
</table>

4.10. Overall Acceptability

Results of the sensory assessment are presented in Table 19. The judges observes a decline in overall acceptability mayonnaise during storage by giving low score. The decrease in overall acceptability of mayonnaise
during storage might be due to change in color, taste, and flavor of mayonnaise samples. However overall acceptability of T1 was better than all other treatments.

Table 19. The effect of different concentration of corn oil on the overall acceptability of mayonnaise

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Storage (Days)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>9.2</td>
<td>8.4</td>
<td>7.3</td>
<td>7.1</td>
<td>6.3</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>8.3</td>
<td>8.1</td>
<td>7.2</td>
<td>7.2</td>
<td>6.1</td>
<td>7.38</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>8.1</td>
<td>7.4</td>
<td>7.1</td>
<td>5.4</td>
<td>5.5</td>
<td>6.90</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>7.3</td>
<td>7.1</td>
<td>6.3</td>
<td>5.2</td>
<td>5.1</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>6.4</td>
<td>6.1</td>
<td>5.3</td>
<td>5.1</td>
<td>4.5</td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.86</td>
<td>7.42</td>
<td>6.60</td>
<td>6.20</td>
<td>5.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1= By using 235 ml of corn oil
T2= By using 240 ml of corn oil
T3= By using 245 ml of corn oil
T4= By using 250 ml of corn oil
T5= By using 255 ml of corn oil

Table 20. Analysis of the variance for the effect of different concentration of corn oil on the overall acceptability content of mayonnaise

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>d.f</th>
<th>S.S</th>
<th>M.S</th>
<th>F.Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>4</td>
<td>16.30</td>
<td>4.075</td>
<td>58.30</td>
</tr>
<tr>
<td>Storage</td>
<td>4</td>
<td>17.81</td>
<td>4.453</td>
<td>63.71</td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>1.12</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>1.12</td>
<td>0.070</td>
<td></td>
</tr>
</tbody>
</table>

Non-significant

Comparison of treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.66</td>
<td>7.38</td>
<td>6.90</td>
<td>6.20</td>
<td>5.44</td>
</tr>
</tbody>
</table>

5. Conclusion

The present project was carried out to study the effect of corn oil on the different quality characteristics of mayonnaise. Different concentrations of corn oil were used to prepare mayonnaise samples. The mayonnaise samples were prepared by using 235 ml, 240 ml, 245 ml, 250 ml and 255 ml of corn oil. These samples were tested for chemical properties like moisture, crude protein, crude fat, total ash, peroxide value and acidity. Among the sensory characteristics it was evaluated for its taste, texture, flavor and overall acceptability during 40 days of storage period. The test was made after 10 days interval up to 40 days. Among chemical characteristics the effect of different oil concentration was non-significant for fat and acidity. While as sensory characteristics were concerned color, flavor, taste, texture and overall acceptability decreased by increasing oil concentration. The last result was shown by the mayonnaise sample prepared by using 235 ml of corn oil. The concentration of 235 ml of corn oil showed good quality attributes especially with respect to its sensory evaluation such as color, taste, texture, flavor and overacceptibility of mayonnaise. Mayonnaise prepared by using 235 ml of corn oil also showed good emulsion stability than others.

References