Article Versions
Export Article
Cite this article
  • Normal Style
  • MLA Style
  • APA Style
  • Chicago Style
Research Article
Open Access Peer-reviewed

Study of the Biochemical and Phytochemical Composition of Carapa procera (Meliaceae) Almonds from the Côte d'Ivoire Center

Fofana Nakêmin Hadja, Koffi Kouamé Mathias, Fofana Ibrahim
American Journal of Food and Nutrition. 2022, 10(2), 45-49. DOI: 10.12691/ajfn-10-2-2
Received July 01, 2022; Revised August 04, 2022; Accepted August 14, 2022

Abstract

Carapa procera DC (Meliaceae) is a species known in the rural and scientific world for its cosmetic and medicinal virtues for human and animal health. This study aims to contribute to the valorisation of Carapa procera kernels in the food industry. Thus, the physicochemical and phytochemical characteristics of Carapa procera kernels were evaluated according to usual laboratory methods. The evaluation of the parameters led to the following results : 25.06 ± 1.22 g/100g moisture, 5.8 pH, 3 g/100g ash, 61.4 ± 1.24 g/100g crude fat, (3.5 ± 0. 17 g/100g protein, 21.83 ± 1.2g/100g crude fiber, 10.27 g/100g carbohydrates, 607.68 Kcal/100g energy value, 0.9 ± 0.05 g/100g total sugars and 0.26 ± 0.02 g/100g reducing sugars. The determination of minerals by flame atomic absorption spectrophotometer showed that the almonds contain (mg/100g) : K/135.815 ± 3.57, Mg/46.651 ± 0.86, Ca/32.385 ± 0.34, Na/9.9 ± 1.27, Fe/1.141 ± 0.6, Cu/0.606 ± 0.10, Zn/0.598 ± 0.01 and Mn/0.56 ± 0.11. The phytochemical parameters show the presence of secondary metabolites such as flavonoids, tannins, terpenes and sterols. And, the contents of total phenols (2369.846 ± 10.87 mg GAE/100g DM), flavonoids (49.393 ± 0.37 mgEquercetin/100g DM), tannins (84.667 ± 0.32 mgEATanninic/100g DM) and phytates (0.208 ± 0.3 mgEAPhytic/100g DM). In short, Carapa procera kernels present interesting nutritional and phytochemical potentials to be valorised in food and agro-industry.

1. Introduction

Several plant species contain vegetable oil, but the name oil plants is reserved for those species that have a high content of extractable fats that can be converted into oils.

The multitude of oilseed resources potentially provides different sectors of activity with a variety of uses for their seeds or kernels in human or animal food and a wide variety of fats. The seeds of these plants are transformed into vegetable oils by simple or mechanised processes for food, cosmetic, therapeutic and energy purposes. And, oilseeds and vegetable oils are among the most traded agricultural products, with more than 40% of the world's production traded on international markets 1.

Apart from the best known and consumed oilseeds, a myriad of timber and non-timber forest products (NTFPs) play an important role in food, medicine, art, energy and many other areas. Many experts believe that NTFPs are a resource that can both improve livelihoods through poverty alleviation and create employment along its distribution pathway while maintaining the generational capacity of the host forest site 2.

Among these unvulgarised oilseeds is the genus Carapa, identified in Latin America and sub-Saharan Africa. Carapa procera DC (Meliaceae), the main species of the genus present in West Africa 3, is a plant with multiple uses. Today, this species is only represented by old plants with low and irregular fruit production. According to 4 and 5, Carapa procera kernels are mainly used in the medical and cosmetic fields in rural areas. However, 6 concluded that Carapa procera species, beyond its medicinal and cosmetic attributes could be used for animal feed due to its significant protein content after further analysis such as on anti-nutritional and other compounds. Hence, the main objective of this work, which is the food valorization of Carapa procera kernel, is carried out through their physicochemical and phytochemical characterizations.

2. Material and Methods

2.1. Material
2.1.1. Study Area

The Carapa kernels used in the study were collected in the village of Boukébo in the department of Botro in Côte d'Ivoire. The geographical coordinates in DMS (degrees, minutes, seconds) of the site are [7°45'16" N ; 5°19'28" W] (http://fr.getamap.net/cartes/cote_d_ivoire_(general)/_boukebo/). The study area has a humid tropical regime (baouléen climate) with four seasons: a long and short rainy season and a short and long dry season 7.


2.1.2. Study Species

The biological material consists of Carapa procera kernels. These kernels are derived from fruits containing seeds previously harvested from trees of this species. Fruiting of this species takes place in the first quarter of the year. The Carapa procera seeds were then transported to the laboratory and packed in jute bags.

2.2. Methods
2.2.1. Sampling of Biological Material

Carapa procera kernels were obtained from the seeds themselves, which were obtained from the fruits. These fruits were collected according to their accessibility because the plants of this species grow spontaneously. A total of 25 kg of seeds were collected on the site visited.


2.2.2. Processing of Carapa procera Kernels

After collection, the Carapa procera seeds sent to the laboratory were dried in the sun for 2 weeks at room temperature (25°C ± 2). They were then sorted, crushed and the resulting kernels were finely ground and stored in the refrigerator for the various analyses. The various analyses were carried out in triplicate.


2.2.3. Proximate Analysis of Samples

pH, moisture, ash, crude protein, crude fat, crude fiber, total sugars and reducing sugars were determined respectively by following the standard method 8, 9, 10, 11, 12, 13, 14, while Carbohydrate contents were calculated by difference [100- (protein + crude fat + ash + crude fiber)] 15. In addition to the energy value (EV) was calculated by applying the heat coefficients of 16 according to the following equation: [EV (Kcal/100g) = (4 x Protein%) + (4 x Carbohydrate%) + (9 x Fat%)]. The values of analyses were the means of three determinations.


2.2.4. Mineral Analysis

The content of mineral elements (Mn, Mg, K, Ca, Na, Cu, Fe and Zn) was determined by atomic absorption spectrophotometry (SAA 110 Varian) with an air-acetylene flame according to 17.


2.2.5. Phytochemical Characterization of Carapa procera Kernels
2.2.5.1. Phytochemical Screening

The detection of the presence of certain families of secondary metabolites (polyphenols, flavonoids, alkaloids, saponins, etc.) in Carapa procera kernels was carried out according to the method described by 18, 19, 20, 21, 22.


2.2.5.2. Determination of Polyphenols and Anti-nutritive Factors

2.2.5.2.1. Total polyphenol content

The total polyphenols were extracted with methanol and then determined according to the method of 23. The total phenol content was expressed in milligrams of gallic acid equivalent (GAE) per 100 g dry weight (mg GAE/100g DM).

2.2.5.2.2. Flavonoid content

The flavonoids were measured according to the method described by 24, the principle of which is as follows: the flavonoids react with aluminium chloride in the presence of potassium acetate to give a yellow complex, the intensity of which is proportional to the quantity of flavonoids present in the medium.

2.2.5.2.3. Tannin content

The tannins were measured according to the method described by 25, the principle of which is as follow: the tannins react in an acid medium with vanillin to give a yellow complex whose intensity is proportional to the quantity of tannins present in the medium.

2.2.5.2.4. Determination of anti-nutritive factors and phytate/iron and phytate/Zn molar ratios

Phytates were quantified according to the method of 26 based on the decolourisation of the Wade reagent by phytates. This discoloration is proportional to the amount of phytates present in the medium.

The molar ratio of phytate to iron (Phy/Fe) was calculated according to the formula of 27.

TP: Phytate content; MMP: Molar mass of phytic acid (660.04 g/mol)

TFe: Iron content; MAFe: Atomic mass of iron (55.84 g/mol)

The phytate/Zinc (Phy/Zn) molar ratio was determined using the equation of 27.

TP: Phytate content; MMP: Molar mass of phytic acid (660.04 g/mol)

TZn: Zinc content; MAZn: Zinc atomic mass (65.38 g/mol).


2.2.6. Statistical Analysis

Descriptive statistical analyses for calculating the means and the standard deviation of the mean were performed using excel.

3. Results and Discussion

3.1. Results
3.1.1. Biochemical Characterisation of Carapa procera Kernels

The analyses on Carapa procera kernels were carried out on dry samples or dry matter (DM). In the fresh state the moisture content was 25.06 ± 1.22 g/100g with a pH of 5.8. The results of the analysis of dry matter (DM) of the Carapa procera kernels are presented in Table 1 and shows that it has 3 g/100g DM of ash, a fat content of 61.4 ± 1.24 g/100g, a protein content of 3.5 ± 0.17 g/100g DM. With 21.83 ± 1.2g/100g DM of fibre, the available carbohydrate content is 10.27g/100g DM and an energy value of 607.68 Kcal/100g DM. The total sugars are 0.9 ± 0.05 g/100g DM and 0.26 ± 0.02 g/100g DM are the reducing sugars values.

Furthermore, the results of the analysis of the dry milling of these almonds show an ash content of 3 g/100g DM with a variety of mineral elements as shown in Table 2. Among these mineral elements, we can distinguish macroelements such as : potassium 135.815 ± 3.57 mg/100g, magnesium 46.651 ± 0.86 mg/100g, calcium 32.385 ± 0.34 mg/100g, sodium 9.9 ± 1.27 mg/100g. Trace elements such as iron 1,141 ± 0,6 mg/100g, copper 0,606 ± 0,10 mg/100g, zinc 0,598 ± 0,01 mg/100g and manganese 0,56 ± 0,11 mg/100g.


3.1.2. Phytochemical Characterization of Carapa procera kernels

The phytochemical screening carried out on Carapa procera kernels reveals the presence of polyphenols including flavonoids, tannins, terpenes and sterols and the absence of alkaloids and saponins as shown in Table 3.

The identified secondary metabolites were thus quantified in methanolic extracts with the exception of phytates, thus the content of total phenols 2369.846 ± 10.87 mgGAE/100g DM, that of flavonoids was 49.393 ± 0.37 mgEquercetin/100g DM and of tannins is 84.667 ± 0.32 mgEATanninic/100g DM Table 4. The phytate content is 0.208 ± 0.3 mgEAPhytic/100g DM, all of which are summarised in Table 5.

3.2. Discussion

The results of the lipid content of Carapa procera kernels obtained (61.4 ± 1.24 g/100g) are identical to those of 6 i.e. 61.5 ± 3.1 g/100g but remain lower than those of 28 i.e. 74.76 ± 1.27 g/100g. Compared to some oilseeds, Carapa procera kernel is a good source of lipids. Indeed, this content is 45 to 50 g/100g of fresh seeds for oil palm, 44 g/100g for sunflower, 28.26 ± 0.08 g/100g for groundnut, 18 g/100g for soybean, and 18 g/100g for cotton 29.

Besides lipids, Carapa procera kernels are rich in fibre with a content of 21.83 ± 1.2 g/100g. This value is higher than the one found by 6 which is 12.1 ± 0.1%. According to the literature, fibre plays a significant role in the prevention of cardiovascular disease, colon cancer and type 2 diabetes 30. Indeed, it has the ability to capture part of the lipids and carbohydrates, which would partly regulate the blood sugar level and avoid excess cholesterol 31.

The available carbohydrate content of 10.27g/100g of Carapa procera almonds in this study is lower than that of 32 which is 17.13%. Like fat and fibre, carbohydrates contribute to the proper functioning of the body. And, fats and carbohydrates are the main sources of energy for the body 33.

The protein measured in this study is evaluated at 3.5 g/100g. The protein content of Carapa procera found in the literature is very variable. Indeed, a value of 8.3% was found by 32 while 6 obtained 20.2 ± 0.5%. And, 6.2% was obtained by 34 for Carapa guianensis Aubl. This variation in protein content is usually attributed to genetic and/or environmental factors or to the method of analysis.

At the level of total sugars, our results are 0.9 ± 0.05 g/100g and lower than those of 6 which are 12.4±0.1%.

The energy value of Carapa procera kernels is 607.68 Kcal/100g of kernels. This energy value is particularly justified by its high fat content of 61.4±1.24g/100g. Their consumption could be necessary for the proper functioning of muscle cells and the brain, but also to support situations of intense physical effort 35.

The ash value of Carapa procera kernels is 3 g/100g. This value is similar to that of 32 which is 3.68%. The low ash content of these kernels is an indication of their low mineral element content and reflects their high organic content 36.

The determination of mineral elements in Carapa procera kernels shows that potassium is the major mineral with 135.815 ± 3.57 mg/100g. Calcium, magnesium and sodium were detected in small quantities. Iron, copper, zinc and manganese were detected in very small quantities.

In addition to the nutrient analysis, some secondary metabolites were investigated in Carapa procera kernels. The polyphenol content of Carapa procera kernels in this study is 2369.846±10.87 mgGAE/100g DM. This value is lower than that obtained by 32 7.46±0.15%. This is the same for the flavonoid content which was 49.393±0.37 mgEQ/100g against that obtained by 32 which was 5.98±1.38%. The tannin content of Carapa procera kernels in this study is 84.667±0.32 mgEAT/100g DM, it is lower than that of groundnut seeds which depending on the variety varies from 822±3.78% to 903±4.45% 37.

The phenolic compounds present in Carapa procera kernels justify the cosmetic and medicinal properties according to 38, 39. These phenolic compounds are also known to be antioxidants, mainly due to their redox properties 40. Carapa procera kernels could be important in human and/or animal nutrition in addition to its medical and cosmetic potential.

Phytates are present in Carapa procera kernels at a level of 0.208±0.3 mg/100g DM. Anti-nutritional properties have been attributed in part to phytic acid, since by forming complexes with divalent cations such as Fe2+, Ca2+, Mg2+ or Zn2+ prevent the metabolism of these minerals, affect their solubility or functionality 41, 42. However, interactions between phytic acid and proteins give it enzymatic inhibition properties, especially of α-amylase, which prevents starch digestion and reduces the amount of glucose in the blood. The beneficial or anti-nutritional effects of phytic acid could therefore depend on its degree of hydrolysis, which involves several factors, including its concentration in relation to other nutrients, the presence of enzymes, the influence of product manufacturing processes, the health status and nutritional habits of each individual 43.

The molar ratios of Phytates to Iron and Phytates to Zinc were carried out and are 0.015 and 0.034 respectively. The values obtained in this study are within the range of limit values that can favour the bioavailability of the mineral elements iron and zinc contained in Carapa procera kernels. According to 44, phytate/iron molar ratios higher than 0.5 are considered indicative of low iron bioavailability. Zinc absorption is considered high, moderate or low when the phytate/zinc molar ratio is less than 5, between 5 and 15 or greater than 15 respectively 45, 46. Thus, phytates in Carapa procera kernels do not appear to be endogenous anti-nutritional factors.

4. Conclusion

The present study gives an overview of the biochemical and phytochemical composition of Carapa procera kernels. It was found that these kernels have a high lipid and fibre content of 61.4±1.24% and 21.83±1.2% respectively. And, its contents in other nutrients and phytochemicals are on the whole low, these almonds can be then advised as food but while being supplemented. In addition, a more detailed quantification of its various phenolic compounds could probably allow them to be used in agro-industry, in food processing and as alicaments. The bitter taste of this foodstuff limits its use in food. According to 3, this taste is due to the triterpenes or phenolic compounds contained in Carapa procera kernels. Given the potential of the species studied, it would be important to rejuvenate its flora and domesticate it through better cultivation and storage techniques. All this could then improve the nutritional and phytochemical qualities of Carapa procera kernels.

References

[1]  OECD/FAO, Perspectives agricoles de l'OCDE et de la FAO 2020-2029, Éditions OCDE, Paris/FAO, Rome, 2020.
In article      
 
[2]  Ingram, Verina, Ndoye O., Iponga D.M., Chupezi J.T., & Nasi R., Les produits forestiers non ligneux : contribution aux économies nationales et stratégies pour une gestion durable. Etat des Forêts du Bassin du Congo, 2010.
In article      
 
[3]  Guillemot, Le Carapa, un arbre tropical aux intérêts écologiques et économiques prometteurs. Rapport de stage; Paris-Grignon: INRA, http://www.carapa.org/data/File/pdf/RapportdestageNicolasGuillemot.pdf 23p, 2004.
In article      
 
[4]  Dembélé U., Lykke A.M., Koné Y., Témé B., & Kouyaté A.M., Use-value and importance of socio-cultural knowledge on Carapa procera trees in the Sudanian zone in Mali. Journal of Ethnobiology and Ethnomedicine 11:14p, 2015.
In article      View Article  PubMed
 
[5]  Tiétiambou F.R.S., Lykke A.M., Korbéogo G., Thiombiano A., & Ouédraogo A., Perceptions et savoirs locaux sur les espèces oléagineuses locales dans le Kénédougou, Burkina Faso. Bois et forêts des tropiques, n° 327 (1) Espèces oléagineuses au Burkina Faso / le point sur…, 2016.
In article      View Article
 
[6]  Djenontin T.S., Wotto V.D., Avlessi F., Lozano P., Sohounhloué D.K.C., & Daniel Pioch D., Composition of Azadirachta indica and Carapa procera (Meliaceae) seed oils and cakes obtained after oil extraction. Industrial Crops and Products 38, 39-45, 2012.
In article      View Article
 
[7]  Kouassi A. M., Kouamé K. F., Koffi Y. B., Dje K. B., Paturel J. E., & Oulare S., Analyse de la variabilité climatique et de ses influences sur les régimes pluviométriques saisonniers en Afrique de l’Ouest: cas du bassin versant du N’zi (Bandama) en Côte d’Ivoire. Environment, Nature, Landscape. 2010.
In article      View Article
 
[8]  AOAC, Official methods of analysis of the Association of Official Analytical Chemists,15th ed, Washington DC, 1230p, 1990.
In article      
 
[9]  AOAC, Official methods of analysis of the Association of Official Analytical Chemists, 16 th edn Arlington, V. A. USA, 250 p, 1995.
In article      
 
[10]  ISO 6884, Détermination du taux de cendres dans les corps gras d’origine animale et végétale. Édition 4: 13p, 2008.
In article      
 
[11]  ISO 659, Graines oléagineuses — Détermination de la teneur en huile, 2009.
In article      
 
[12]  Van Soest, “Use of detergents in the analysis of fibrous feeds II- A rapid method for the determination of fiber and lignin”, Journal of Association of Official Analytical Chemistry, 46, 829-835, 1963.
In article      View Article
 
[13]  Dubois M, Gilles K., Hamilton J., Rebers P. & Simith F., Colorimetric method for determinations of sugars and related substances. Analytica Chimica Acta., 280 : 350- 356, 1956.
In article      View Article
 
[14]  Bernfeld, Amylase β et α, In : method in enzymology 1, Colowick S.P. and Kaplan N.O., Academic Press, pp 149-154, 1955.
In article      
 
[15]  FAO/INFOODS, Directives FAO/INFOODS relatives à la vérification des données sur la composition des aliments avant la publication d'une table/base de données utilisateur-Version 1.0. FAO, Rome, 2015.
In article      
 
[16]  Atwater et Rosa, A new respiratory colorimeter and the conservation of energy in human body. Physiol. Rev., 9: 214-251, 1899.
In article      View Article
 
[17]  ISO 6869, Aliments des animaux – Détermination des teneurs en calcium, cuivre, fer, magnésium, manganèse, potassium, sodium, et zinc – Méthode par spectrométrie d’absorption atomique. Édition 1: 16p, 2000.
In article      
 
[18]  Harborne J.B., Phytochemical methods. A guide to modern techniques of plants analysis. Third Edition. ISBN: 0-412-57260-5 (HB) and 0-412-57270-2 (PB), 203-214, 1998.
In article      
 
[19]  Judith M.D., Etude phytochimique et pharmacologique de Cassia nigricans utilisé dans le traitement des dermatoses au Tchad; Thèse de doctorat en pharmacie de l’Université de Bamako, Mali, 57-64, 2005.
In article      
 
[20]  N’Guessan K., Kadja B., Guédé N. Zirihi G.N., Traoré D. & Aké-Assi L., Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences & Nature Vol. 6 N°1, 1-15, 2009.
In article      View Article
 
[21]  Bruneton J.; Pharmacognosie - Phytochimie, plantes médicinales. 4e éd. Revue et augmentée, Paris, Tec & Doc - Éditions médicales internationales, 1288 p, 2009.
In article      
 
[22]  Bagré I., Bahi C., Méité S., Djaman A.J., Guédé G.F., Evaluation et Amélioration in vitro de l’activité antifongique de Morinda morindoides (Baker) Milne- Redh (Rubiacées) sur Cryptococcus neoformans, un champignon responsable de mycose humaine. Journal des Sciences Pharmaceutiques et Biologiques 8, 15-23, 2007.
In article      
 
[23]  Singleton V. L., Orthofer R, & Lamuela-raventos R.M., “Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent”, Methods Enzymol, 299, 152-178, 1999.
In article      View Article
 
[24]  Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G., Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91, 571-577, 2005.
In article      View Article
 
[25]  Bainbridge Z, Tomlins K, Willings K & Westby A., Methods for assessing quality characteristics of non grain starch staple. Part 4 advanced methods, National ressources institute, University of Greenwich, UK ISBN 0 – 85954 – 400 – 1, 43-79, 1996.
In article      
 
[26]  Latta & M. Eskin, “A simple and rapid colorimetric method for phytate determination”; J Agric. Food Chem, 28, 313- 315, 1980.
In article      View Article
 
[27]  Harland B. F.; Smikle-williams S. & Oberleas D., High performance liquid chromatography analysis of phytate (IP6) in select foods. Journal of Food Composition and Analysis, 17, 227-233, 2004.
In article      View Article
 
[28]  Nonviho G., Valorisation chimique de la biomasse oléagineuse d’origine béninoise: Lophira lanceolata et Carapa procera, Thèse de Doctorat/UAC-UL, 2015.
In article      
 
[29]  Kouamé N’dri M-T., Soro K., Mangara A., Diarrassouba N., Koulibaly A. V. & Boraud N’Takpé K. M., Étude physico-chimique de sept (7) plantes spontanées alimentaires du centre-ouest de la Côte d’Ivoire. Journal of Applied Biosciences 90, 8450-8463, 2015.
In article      View Article
 
[30]  Slavin J.L., Dietary fiber and body weight. Nutrition; 21, 411-418, 2005.
In article      View Article  PubMed
 
[31]  Ponka R., Goudoum A., Chami Tchungouelieu A. & Fokou E., Evaluation nutritionnelle de quelques ingrédients entrant dans la formulation alimentaire des poules pondeuses et porcs d’une ferme d’élevage au Nord-Ouest Cameroun, Int. J. Biol. Chem. Sci. 10(5), 2073-2080, 2016.
In article      View Article
 
[32]  Mombouli J.B., Andzouana M. & Attibayeba, Evaluation of proximate, mineral and phytochemical compositions of Carapa procera (family Meliaceae), Pak. J. Nutr., 13(6), 359-365, 2014.
In article      View Article
 
[33]  Legrand P., Bourre J.M., Descomps B., Durand G. & Renaud S., Lipides. Dans Apports nutritionnels conseillés pour la population française (Martin A., ed), Paris, pp. 63-82, 2001.
In article      
 
[34]  Pinto, Avaliação de danos causados por insetos em sementes de andiroba (Carapa guinensis Aubl.) e andirobinha (C. procera) (Meliaceae) na Reserva Florestal Ducke em Manaus, AM. Brasil. 80 f. Dissertação (Mestrado em Ciências Biológicas) - Instituto Nacional de Pesquisa da Amazônia, Universidade Federal do Amazonas, Manaus, 2007.
In article      
 
[35]  Folin, L’encyclopédie visuelle des aliments. Edition du Chariot d’Or, 688p, 2005.
In article      
 
[36]  Egharevba, H.O. & F.O. Kunle, Preliminary phytochemical and proximate analysis of the leaves of Piliostigma thonningii (Schumach) mineredhead. Ethnobotanical leaflets, 14, 570-577, 2010.
In article      
 
[37]  Shad M.A., H. Pervez, Z.I. Zafar, M. Zia-ul-Haq & Nawaz H., Evaluation of biochemical composition and physicochemical parameters of oil from seeds of desi chickpea varieties cultivated in arid zone of Pakistan. Pak. J. Bot., 41(2), 655-662, 2009.
In article      
 
[38]  Alessandra, R.P. Ambrozin, Ana C. Leite, Fabiana C. Bueno, Paulo C. Vieira, Joao B. Fernades, Odair C. Bueno, M. Fatima das G. Fernandes da Silva, Fernando C. Pagnocca, M. Jose A. Hebling & Mauricio Bacci Jr., Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J. Braz. Chem. Soc, 17, 542-547, 2006.
In article      View Article
 
[39]  Ferraris, F. K., Rodriques, V. P. da Silva, Fiqueiredo R., Penido C. & Hernriques Md., Modulation of T lymphocyte and eosinoplil functions in vitro by natural tetranortriterpenoids isolated from Carapa guinensis Aublet. Int. Immunopharmacol., 11, 1-11, 2011.
In article      View Article  PubMed
 
[40]  Basile, A, Ferrara L., Del Pozzo M., Mele G., Sorbo S., Bassi P. & Montesano D., Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana mart. J. Ethnopharmacol., 102, 32-36, 2005.
In article      View Article  PubMed
 
[41]  Rickard S.E. & Thompson L.U., Interactions and biological effects of phytic acid. Antinutrients and Phytochemicals in Food, 662, 294-312, 1997.
In article      View Article
 
[42]  Kumagai H., Shizawa Y. & Sakurai H., Influence of phytate Removal and Structural Modification on the calcium-binding Properties of Soybean Globulins. Biosci Biotechnol Biochem, 62 (2), 341-346, 1998.
In article      View Article  PubMed
 
[43]  Hubert J., Caractérisation biochimique et propriétés biologiques des micronutriments du germe de soja – Etude des voies de sa valorisation en nutrition et santé humaines, thèse, 174p, 2006.
In article      
 
[44]  Lestienne I., Icard-Vernière C., Picq C. & Trèche S., Effets du trempage de graines et de farines de céréales et de légumineuses sur leur teneur en phytates et leurs rapports molaires Phy/Fe et Phy/Zn. In “2ème Atelier international. Voies alimentaires d’amélioration des situations nutritionnelles”, pp. 479-488, 2003.
In article      
 
[45]  Allen L., Benoist B., Dary O. & Hurrell R., Guidelines on Food Fortification with Micronutrients. World Health Organization, Food and Agricultural Organization at the United Nations, 376 p, 2006.
In article      
 
[46]  Gibson R. S. & Anderson V. P., A review of interventions based on dietary diversification or modification strategies with the potential to enhance intakes of total and absorbable zinc. Food and Nutrition Bulletin, 30, 108-143, 2009.
In article      View Article  PubMed
 

Published with license by Science and Education Publishing, Copyright © 2022 Fofana Nakêmin Hadja, Koffi Kouamé Mathias and Fofana Ibrahim

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Cite this article:

Normal Style
Fofana Nakêmin Hadja, Koffi Kouamé Mathias, Fofana Ibrahim. Study of the Biochemical and Phytochemical Composition of Carapa procera (Meliaceae) Almonds from the Côte d'Ivoire Center. American Journal of Food and Nutrition. Vol. 10, No. 2, 2022, pp 45-49. http://pubs.sciepub.com/ajfn/10/2/2
MLA Style
Hadja, Fofana Nakêmin, Koffi Kouamé Mathias, and Fofana Ibrahim. "Study of the Biochemical and Phytochemical Composition of Carapa procera (Meliaceae) Almonds from the Côte d'Ivoire Center." American Journal of Food and Nutrition 10.2 (2022): 45-49.
APA Style
Hadja, F. N. , Mathias, K. K. , & Ibrahim, F. (2022). Study of the Biochemical and Phytochemical Composition of Carapa procera (Meliaceae) Almonds from the Côte d'Ivoire Center. American Journal of Food and Nutrition, 10(2), 45-49.
Chicago Style
Hadja, Fofana Nakêmin, Koffi Kouamé Mathias, and Fofana Ibrahim. "Study of the Biochemical and Phytochemical Composition of Carapa procera (Meliaceae) Almonds from the Côte d'Ivoire Center." American Journal of Food and Nutrition 10, no. 2 (2022): 45-49.
Share
[1]  OECD/FAO, Perspectives agricoles de l'OCDE et de la FAO 2020-2029, Éditions OCDE, Paris/FAO, Rome, 2020.
In article      
 
[2]  Ingram, Verina, Ndoye O., Iponga D.M., Chupezi J.T., & Nasi R., Les produits forestiers non ligneux : contribution aux économies nationales et stratégies pour une gestion durable. Etat des Forêts du Bassin du Congo, 2010.
In article      
 
[3]  Guillemot, Le Carapa, un arbre tropical aux intérêts écologiques et économiques prometteurs. Rapport de stage; Paris-Grignon: INRA, http://www.carapa.org/data/File/pdf/RapportdestageNicolasGuillemot.pdf 23p, 2004.
In article      
 
[4]  Dembélé U., Lykke A.M., Koné Y., Témé B., & Kouyaté A.M., Use-value and importance of socio-cultural knowledge on Carapa procera trees in the Sudanian zone in Mali. Journal of Ethnobiology and Ethnomedicine 11:14p, 2015.
In article      View Article  PubMed
 
[5]  Tiétiambou F.R.S., Lykke A.M., Korbéogo G., Thiombiano A., & Ouédraogo A., Perceptions et savoirs locaux sur les espèces oléagineuses locales dans le Kénédougou, Burkina Faso. Bois et forêts des tropiques, n° 327 (1) Espèces oléagineuses au Burkina Faso / le point sur…, 2016.
In article      View Article
 
[6]  Djenontin T.S., Wotto V.D., Avlessi F., Lozano P., Sohounhloué D.K.C., & Daniel Pioch D., Composition of Azadirachta indica and Carapa procera (Meliaceae) seed oils and cakes obtained after oil extraction. Industrial Crops and Products 38, 39-45, 2012.
In article      View Article
 
[7]  Kouassi A. M., Kouamé K. F., Koffi Y. B., Dje K. B., Paturel J. E., & Oulare S., Analyse de la variabilité climatique et de ses influences sur les régimes pluviométriques saisonniers en Afrique de l’Ouest: cas du bassin versant du N’zi (Bandama) en Côte d’Ivoire. Environment, Nature, Landscape. 2010.
In article      View Article
 
[8]  AOAC, Official methods of analysis of the Association of Official Analytical Chemists,15th ed, Washington DC, 1230p, 1990.
In article      
 
[9]  AOAC, Official methods of analysis of the Association of Official Analytical Chemists, 16 th edn Arlington, V. A. USA, 250 p, 1995.
In article      
 
[10]  ISO 6884, Détermination du taux de cendres dans les corps gras d’origine animale et végétale. Édition 4: 13p, 2008.
In article      
 
[11]  ISO 659, Graines oléagineuses — Détermination de la teneur en huile, 2009.
In article      
 
[12]  Van Soest, “Use of detergents in the analysis of fibrous feeds II- A rapid method for the determination of fiber and lignin”, Journal of Association of Official Analytical Chemistry, 46, 829-835, 1963.
In article      View Article
 
[13]  Dubois M, Gilles K., Hamilton J., Rebers P. & Simith F., Colorimetric method for determinations of sugars and related substances. Analytica Chimica Acta., 280 : 350- 356, 1956.
In article      View Article
 
[14]  Bernfeld, Amylase β et α, In : method in enzymology 1, Colowick S.P. and Kaplan N.O., Academic Press, pp 149-154, 1955.
In article      
 
[15]  FAO/INFOODS, Directives FAO/INFOODS relatives à la vérification des données sur la composition des aliments avant la publication d'une table/base de données utilisateur-Version 1.0. FAO, Rome, 2015.
In article      
 
[16]  Atwater et Rosa, A new respiratory colorimeter and the conservation of energy in human body. Physiol. Rev., 9: 214-251, 1899.
In article      View Article
 
[17]  ISO 6869, Aliments des animaux – Détermination des teneurs en calcium, cuivre, fer, magnésium, manganèse, potassium, sodium, et zinc – Méthode par spectrométrie d’absorption atomique. Édition 1: 16p, 2000.
In article      
 
[18]  Harborne J.B., Phytochemical methods. A guide to modern techniques of plants analysis. Third Edition. ISBN: 0-412-57260-5 (HB) and 0-412-57270-2 (PB), 203-214, 1998.
In article      
 
[19]  Judith M.D., Etude phytochimique et pharmacologique de Cassia nigricans utilisé dans le traitement des dermatoses au Tchad; Thèse de doctorat en pharmacie de l’Université de Bamako, Mali, 57-64, 2005.
In article      
 
[20]  N’Guessan K., Kadja B., Guédé N. Zirihi G.N., Traoré D. & Aké-Assi L., Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences & Nature Vol. 6 N°1, 1-15, 2009.
In article      View Article
 
[21]  Bruneton J.; Pharmacognosie - Phytochimie, plantes médicinales. 4e éd. Revue et augmentée, Paris, Tec & Doc - Éditions médicales internationales, 1288 p, 2009.
In article      
 
[22]  Bagré I., Bahi C., Méité S., Djaman A.J., Guédé G.F., Evaluation et Amélioration in vitro de l’activité antifongique de Morinda morindoides (Baker) Milne- Redh (Rubiacées) sur Cryptococcus neoformans, un champignon responsable de mycose humaine. Journal des Sciences Pharmaceutiques et Biologiques 8, 15-23, 2007.
In article      
 
[23]  Singleton V. L., Orthofer R, & Lamuela-raventos R.M., “Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent”, Methods Enzymol, 299, 152-178, 1999.
In article      View Article
 
[24]  Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G., Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91, 571-577, 2005.
In article      View Article
 
[25]  Bainbridge Z, Tomlins K, Willings K & Westby A., Methods for assessing quality characteristics of non grain starch staple. Part 4 advanced methods, National ressources institute, University of Greenwich, UK ISBN 0 – 85954 – 400 – 1, 43-79, 1996.
In article      
 
[26]  Latta & M. Eskin, “A simple and rapid colorimetric method for phytate determination”; J Agric. Food Chem, 28, 313- 315, 1980.
In article      View Article
 
[27]  Harland B. F.; Smikle-williams S. & Oberleas D., High performance liquid chromatography analysis of phytate (IP6) in select foods. Journal of Food Composition and Analysis, 17, 227-233, 2004.
In article      View Article
 
[28]  Nonviho G., Valorisation chimique de la biomasse oléagineuse d’origine béninoise: Lophira lanceolata et Carapa procera, Thèse de Doctorat/UAC-UL, 2015.
In article      
 
[29]  Kouamé N’dri M-T., Soro K., Mangara A., Diarrassouba N., Koulibaly A. V. & Boraud N’Takpé K. M., Étude physico-chimique de sept (7) plantes spontanées alimentaires du centre-ouest de la Côte d’Ivoire. Journal of Applied Biosciences 90, 8450-8463, 2015.
In article      View Article
 
[30]  Slavin J.L., Dietary fiber and body weight. Nutrition; 21, 411-418, 2005.
In article      View Article  PubMed
 
[31]  Ponka R., Goudoum A., Chami Tchungouelieu A. & Fokou E., Evaluation nutritionnelle de quelques ingrédients entrant dans la formulation alimentaire des poules pondeuses et porcs d’une ferme d’élevage au Nord-Ouest Cameroun, Int. J. Biol. Chem. Sci. 10(5), 2073-2080, 2016.
In article      View Article
 
[32]  Mombouli J.B., Andzouana M. & Attibayeba, Evaluation of proximate, mineral and phytochemical compositions of Carapa procera (family Meliaceae), Pak. J. Nutr., 13(6), 359-365, 2014.
In article      View Article
 
[33]  Legrand P., Bourre J.M., Descomps B., Durand G. & Renaud S., Lipides. Dans Apports nutritionnels conseillés pour la population française (Martin A., ed), Paris, pp. 63-82, 2001.
In article      
 
[34]  Pinto, Avaliação de danos causados por insetos em sementes de andiroba (Carapa guinensis Aubl.) e andirobinha (C. procera) (Meliaceae) na Reserva Florestal Ducke em Manaus, AM. Brasil. 80 f. Dissertação (Mestrado em Ciências Biológicas) - Instituto Nacional de Pesquisa da Amazônia, Universidade Federal do Amazonas, Manaus, 2007.
In article      
 
[35]  Folin, L’encyclopédie visuelle des aliments. Edition du Chariot d’Or, 688p, 2005.
In article      
 
[36]  Egharevba, H.O. & F.O. Kunle, Preliminary phytochemical and proximate analysis of the leaves of Piliostigma thonningii (Schumach) mineredhead. Ethnobotanical leaflets, 14, 570-577, 2010.
In article      
 
[37]  Shad M.A., H. Pervez, Z.I. Zafar, M. Zia-ul-Haq & Nawaz H., Evaluation of biochemical composition and physicochemical parameters of oil from seeds of desi chickpea varieties cultivated in arid zone of Pakistan. Pak. J. Bot., 41(2), 655-662, 2009.
In article      
 
[38]  Alessandra, R.P. Ambrozin, Ana C. Leite, Fabiana C. Bueno, Paulo C. Vieira, Joao B. Fernades, Odair C. Bueno, M. Fatima das G. Fernandes da Silva, Fernando C. Pagnocca, M. Jose A. Hebling & Mauricio Bacci Jr., Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J. Braz. Chem. Soc, 17, 542-547, 2006.
In article      View Article
 
[39]  Ferraris, F. K., Rodriques, V. P. da Silva, Fiqueiredo R., Penido C. & Hernriques Md., Modulation of T lymphocyte and eosinoplil functions in vitro by natural tetranortriterpenoids isolated from Carapa guinensis Aublet. Int. Immunopharmacol., 11, 1-11, 2011.
In article      View Article  PubMed
 
[40]  Basile, A, Ferrara L., Del Pozzo M., Mele G., Sorbo S., Bassi P. & Montesano D., Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana mart. J. Ethnopharmacol., 102, 32-36, 2005.
In article      View Article  PubMed
 
[41]  Rickard S.E. & Thompson L.U., Interactions and biological effects of phytic acid. Antinutrients and Phytochemicals in Food, 662, 294-312, 1997.
In article      View Article
 
[42]  Kumagai H., Shizawa Y. & Sakurai H., Influence of phytate Removal and Structural Modification on the calcium-binding Properties of Soybean Globulins. Biosci Biotechnol Biochem, 62 (2), 341-346, 1998.
In article      View Article  PubMed
 
[43]  Hubert J., Caractérisation biochimique et propriétés biologiques des micronutriments du germe de soja – Etude des voies de sa valorisation en nutrition et santé humaines, thèse, 174p, 2006.
In article      
 
[44]  Lestienne I., Icard-Vernière C., Picq C. & Trèche S., Effets du trempage de graines et de farines de céréales et de légumineuses sur leur teneur en phytates et leurs rapports molaires Phy/Fe et Phy/Zn. In “2ème Atelier international. Voies alimentaires d’amélioration des situations nutritionnelles”, pp. 479-488, 2003.
In article      
 
[45]  Allen L., Benoist B., Dary O. & Hurrell R., Guidelines on Food Fortification with Micronutrients. World Health Organization, Food and Agricultural Organization at the United Nations, 376 p, 2006.
In article      
 
[46]  Gibson R. S. & Anderson V. P., A review of interventions based on dietary diversification or modification strategies with the potential to enhance intakes of total and absorbable zinc. Food and Nutrition Bulletin, 30, 108-143, 2009.
In article      View Article  PubMed