Design and Analysis of Losses in Power Transformer

E.A. Anazia, E. S Ugochukwu*, J. C. Onuegbu, Onyedikachi S.N
Department of Electrical Engineering, Namdi Azikiwe University Awka, Anambra State, Nigeria
*Corresponding author: samson.uedeh@gmail.com

Abstract This paper examined and presented a simplified approach to power transformer design. Analyzed possible losses associated with power transformers through computational techniques and crucial design diagram.

Keywords: core design, window area, window space factor, cruciform design, winding arrangement, transformer loss analysis

1. Introduction

Transformer is a static electrical device that transfers energy by inductive coupling between its winding circuits [1]. A varying current in the primary windings creates a varying magnetic flux through the secondary winding by which power is delivered to the load. Power transformer is slightly different from potential and current transformers in the sense that it transforms both current and voltage at the same time though they all work using the same principle of electromagnetic induction.

2. Construction Details of Transformer

Single phase shell type transformer is represented in the sketch below. Core type transformer exists, in which the primary and the secondary windings are located on the different limb. As the iron area of the leg \(A_i \) and the window area \(A_w \) = (Height of window \(L \) \(* W_w \) window width) increases, the size of the transformer also increases. In general the size of the transformer increases as the output of the transformer increases [2].

3. Winding Arrangement

The low voltage winding is placed next to the core and high voltage winding over the low voltage winding, on the central limb, in order to reduce the quantity of insulation used, avoid possibility of breakdown of space between the core and high voltage coil [3,4], and to control the leakage reactance. However, in the case of low voltage rated transformers, low and high voltage coil can be arranged in any manner, as in this design, but to obtain optimum performance, we arranged the coils as shown below.

4. Core Design

Net iron Area of the leg or limb or Core

\[A_i = \Phi / B_m \] (1)
The effect of mechanical forces on the wound coil under short circuit or high overload condition tends to deform the geometry of the transformer or its structure. These forces destroy the coil and insulations, in rectangular or square wound coil and core, whereas the effect is negligible in the case of circular wound coil and core or cruciform core design [5,6]. The circular core calls for more number of different sizes of laminations and poses a problem during core anchoring. Hence cruciform core design is preferred in practical design of transformers. Cruciform core design reduces the net area of the core, gives high space factor, reduces the mean length of turns, and consequent I^2R loss, as demonstrated in the two core design comparison below.

5. Leg or Limb Section Details

1. Square core (With a circular coil)

- \(a = \text{width of the stamping or leg} \)
- \(d = \text{d}^*\sin 45^\circ \text{ or } d^*\cos 45^\circ = 0.71^*d \)

where \(d \) is the diameter of the circumscribing circle.

Iron area \(A_i = k_i * a^2 = K_i (0.71^*d)^2 \)

\(= 0.9^*0.5^*d^2 \) for 10\% insulation or \(K_i = 0.9 \) (Iron or staking factor)

2. Cruciform or 2 stepped core and circular coil.

- \(a = \text{width of the largest stamping} \)
- \(b = \text{width of the smallest stamping} \)

Gross area of the core

\(A_g = 2^*a^*b - b^2 \)

Since \(a = d^*\cos \theta \), and \(b = d^*\sin \theta \) -from the figure above.

Substituting in equation (7)

\[A_g = 2^*a^*b - b^2 = 2^*d^2^*\cos 0^\circ \sin 0^\circ - d^2^*\sin 2^\circ. \]

(8)

Figure 4. Cruciform cores with circular coil

By trigonometric identities,

\[\cos 0^\circ = \sin 2^\circ \]

Therefore,

\[A_g = 2^*d^2^*\sin 2^\circ - d^2^*\sin 2^\circ. \]

(9)

For \(A_g \) to be maximum, \(A_g \) must be differentiated with respect to \(\theta \), \(A_g = d^2^*(\sin 2\theta - \sin^2 \theta) \)

Hence;

\[\frac{dA_g}{d\theta} = d^2^*(2\cos 2\theta - \sin 0\theta) \]

i.e \(2\cos 2\theta - \sin 0\theta \)

\(\theta = 1^\circ 2^\circ/2 = 63.43^\circ/2 = 31.7^\circ. \)

Thus, \(A_g \) is maximum when \(\theta = 31.7^\circ \). With \(\theta = 31.7^\circ \),

\[a = d^*\cos 31.7^\circ = 0.85^*d, \]

\[b = d^*\sin 31.7^\circ = 0.53^*d. \]

\[A_g = 2^*a^*b - b^2 \]

\[= 2^*0.85^*d^*0.53^*d - (0.53d)^2 = 0.62d^2 \]

\[A_i = k_i A_g = 0.9^*0.62d^2 = 0.56d^2 \]

(13)

And \(A_i / A_c = 0.56d^2 / 0.785d^2 = 0.71 \) – better window utilization.

6. Mean Length of Turns

For a given area \(A_i \) say 10cm^2,

(a) Square core (with a circular coil)

\[A_i = 0.45^*d^2 \] as obtained in the previous analysis of equation (3).

Circumference = \(\pi^*d \) – mean length of turns

\[10 = 0.45^*d^2, 10 / 0.45 = d^2. \]

Therefore: \(d = \sqrt{22.22} = 4.71 \)
Hence, mean length of turns $\pi \cdot d = 3.14 \cdot 4.71 = 14.80 \text{ cm}$.

(b) Cruciform-2 stepped core with circular coil.

Circumference $= \pi \cdot d$ – mean length of turns

$$10 = 0.56 \cdot d^2, 10 / 0.56 = d^2.$$

Therefore: $d = \sqrt{17.857} = 4.226$

Hence mean length of turns $\pi \cdot d = 3.14 \cdot 4.226 = 13.28 \text{ cm}$.

Therefore, the addition of one step to the square core enhanced the utilization of more space of the circumscribing circle and reduced the mean length of turns by a difference of 1.52 cm for the same number of turns. This result in more copper savings; i.e better economy of design.

7. Yoke Section Details.

The purpose of the yoke is to connect the legs providing a least reluctance path. In other to limit iron loss in the yoke, operating flux density is reduced by increasing yoke area. Generally, yoke area is made 20% more than the leg areas. i.e.

$$0.2 \cdot A_i = A_y$$

Where A_y – yoke area

A_i – core or leg area.

8. Window Area and Core Proportion

Area of the window A_w

$$= \text{KVA} / \left(2.22 \cdot f \cdot A_i \cdot B_m \cdot \Phi_m \cdot 10^{-3} \right) (\text{meter}^2).$$

If H_w = height of the window, W_w = width of the window, then $A_w = H_w \cdot W_w$. In other to limit the leakage reactance of the transformer, H_w is made more than W_w. In practice, H_w / W_w lies between 2.5 and 3.5.

9. Winding Details

Since the applied voltage V_1 is approximately equal to the voltage induced

$$E_1 = 4.44 \cdot f \cdot \Phi_m \cdot N_1 = E_1 \cdot N_1.$$

Number of primary turns (or turns / phase)N_1

$$= V_1 / E_1 \text{ – Single phase transformer.}$$

Number of Secondary Turns (or turns / phase)N_2

$$= V_1 / E_1 \text{ – Single phase transformer.}$$

Primary Current (or current / phase)I_1

$$= \text{KVA} \cdot 10^3 / V_1 \text{ – Single phase transformer.}$$

Cross sectional Area of primary winding conductor

$$a_1 = I_1 / J \text{ (mm}^2\).$$

Secondary current (or current/phase)

$$I_2 = \text{KVA} \cdot 10^3 / V_2 \text{ – Single phase transformer.}$$

Cross sectional area of secondary winding conductor

$$a_2 = I_2 / J \text{ (mm}^2\).$$

9. Output Equations

The output equation for a Single phase shell type transformer is stated as follows:

$$V_A = V_1 I_1 = E_1 I_1 = 4.44 \Phi_m N_1 I_1$$

Where Φ_m = Maximum flux, f = frequency of operation

N_1 = Number of coil turns in the primary coil.

I_1 = Electrical current in primary coil, which sets up the magnetizing flux.

4.44 – constant obtained from form factor.

10. Change of Flux in the Core

Since the flux is assumed to be sinusoidal, the maximum flux Φ_m is achieved at quarter the period of oscillation.

$\Phi_m = B_m \cdot A_i$, where B_m – maximum flux density, A_i = iron area or core area.

Hence, average rate of change of flux

$$\Delta \Phi = \Phi_m / (T / 4) = \Phi_m / 4 / T = 4 \Phi_m / T \text{ Wb/s or volt.}$$

But $T = 1 / f$; this implies

$$4 \Phi_m / (1 / f) = 4 f \Phi_m \text{ Volts}.

Form factor = r.m.s value/average value = 1.11, Therefore

r.m.s value of e.m.f / turn = $1.11 \cdot 4 \cdot f \cdot \Phi_m = 4.44 f \Phi_m$

Comparing with equation (29),

Power delivered $V_A = V_1 I_1 = E_1 I_1 = 4.44 f \Phi_m N_1 I_1$ or Power delivered per turn,

$$V_A / N = V_1 I_1 / N_1 = E_1 I_1 / N_1 = 4.44 f \Phi_m I_1.$$

But $\Phi_m = B_m \cdot A_i$, where B_m = maximum flux density, A_i = iron area or core area.

Figure 5. Wave form of a sinusoidal flux
In a shell type transfer, there are two windows, which are symmetrical to each other. Hence it is sufficient to design one side. Since the low and high voltage windings are placed on the central limb, each window accommodates T_1 and T_2 turns of both primary and secondary windings.

Area of copper in the window

$$A_{cu} = a_1N_1 + a_2N_2 = (I_1N_1/J) + (I_2N_2/J)$$

$$= 2I_1N_1/J = A_w K_w$$

$$\rightarrow I_1N_1 = I_2N_2 = A_w K_w J/2.$$ \hspace{1cm} (34)

Substituting in equation (29) above gives,

$$KVA = 4.44\Phi_m f A_{cu} N_1 I_1 = 10^{-3}.$$ Also $\Phi_m = 4.44A_i B_m f A_w K_w J/2$ \hspace{1cm} (35)

$$= 2.22 A_i B_m f A_w K_w J * 10^{-3}.$$ \hspace{1cm} (36)

$$VA = 2.22 A_i B_m f A_w K_w J$$

- the output equation of a transformer. \hspace{1cm} (37)

11. Window Space factor

Window space factor is defined as the ratio of copper area in the window to the area of the window.

That is $K_w = \frac{\text{Area of copper in the window}}{\text{Area of the window}}$.

For a given window area, as the voltage rating of the transformer increases, quantity and quality of insulation in the window increases \cite{7, 8}, area of copper reduces. Thus the window space factor reduces as the voltage increases.

A value for K_w can be calculated by the following empirical formula

$$K_w = 10/(30 + KV_{hv})$$ \hspace{1cm} (38)

Where KV_{hv} or V_{hv} is the voltage of the high voltage winding expressed in KV or V.

12. Transformer Loss Analysis

Transformer losses fall into three categories:

1. No-load loss, or iron loss
2. Load-loss, copper loss, or short-circuit loss
3. Stray-loss (that is largely load related).

For some larger transformers there are also losses due to fans and pumps providing forced cooling. This will be discussed in a later example \cite{9}.

13. No Load Current of a Transformer

The no-load current I_0 is the vectorial sum of the magnetizing current I_m and core loss or working component current I_c. Function of I_m is to produce flux Φ_m in the magnetic circuit and the function of I_c is to satisfy the no load losses of the transformer. Thus: $I_0 = \sqrt{(I_c^2 + I_m^2)}$, Ampere.

14. Transformer Approximation at no-load

1. In case of a transformer of normal design, the no load current will generally be less than about 2% of the full load current.
2. No load power factor Cos $\Phi_0 = I_c/I_0$ and will be around 0.2.
3. Transformer copper loss.
 (a) The primary copper loss, at no load is negligible as I_0 is very less.
 (b) The secondary copper loss is zero at no load, as no current flows in the secondary winding.

4. Core or Iron loss. Total core loss = loss in leg and yokes. The core loss can be estimated at design stage by referring to graph of core loss/kg versus flux density.

Core loss in leg = loss/kg in leg*weight of leg in kg = loss/kg in leg. = loss/kg in leg*volume of the leg $(A_i H_w)$*density of steel or iron used.

Core loss in yoke = loss/kg in yoke*volume of yoke $(A_i *$mean length of the yoke*density of iron used.)

NB: The density of iron or steel used for the transformer core design lies between 7.55-7.8 grams/cm2

15. Transformer on Load

The current I_2 setup in the transformer when loaded is in phase with V_2 if the load is resistive, lags behind V_2 if the load is inductive, and leads it if the load is capacitive.

The presence of I_2 in the secondary sets up demagnetizing ampere-turn Φ_2, which reduces magnetizing ampere-turn Φ and V_1 becomes higher than E_1. The excesses of V_1 causes more current I_2 known as “load component of primary current” to flow, thereby setting up its own mmf Φ_2. The interaction of this
additional mmf cancels the effect of the demagnetizing mmf Φ_2, previously set-up by I_2 in the transformer. Hence, whatever the load condition, the net flux passing through the core is approximately the same as at no-load. A vital deduction is that due to the constancy of core flux at all load; the “core loss” is also practically the same under all load conditions.

As $\Phi_2 = \Phi_2'$ Therefore,

$$N_2I_2 = N_1I_1'$$. Hence $I_2 = N_2 / N_1 * I_2 = kI_2$.

Equivalent Resistance/Reluctance /Inductance of a Transformer

![Figure 7](image)

The R_2' - the equivalent secondary resistance as referred to primary. Copper loss in secondary is $I_2^2R_2$, which is supplied by primary which takes a current of I_1.

Hence if R_2 is the equivalent resistance in primary which would have caused the same loss as R_2 in secondary, then

$$I_1^2R_2 = I_2^2R_2'$$

Neglecting no-load current I_0, then $I_2/I_1 = 1/k$, Where $R_2 = R_2/K^2$. Referring R_1 = to secondary, that is equivalent primary resistance referred to secondary, we have;

$$I_2^2R_1 = I_1^2R_2'$$

Therefore $R_1 = (I_2/I_1)^2R_2 = k^2R_1$. (40)

16. Stray Loss

Winding Eddy Current Loss

Eddy-current loss is a significant additional component of winding loss. Winding eddy-currents are produced as a result of the alternating leakage flux cutting the windings. This flow within the conductor’s perpendicular to the load current path. The eddy-current losses are a fixed proportion of the load-losses for a particular winding. They do however vary as the square of the frequency, so that the presence of any harmonics in the load current leads to significant additional eddy-current loss [10].

For decades, eddy-current losses have presented an obstacle to reduction of P/R losses within transformer windings. This is because increasing the conductor cross-section with the objective of reducing winding resistance had the effect of worsening the eddy-current component, and little overall benefit was obtained. Since the mid-1960s, continuously transposed conductors which consist of a large number of individually enamelled insulated strands to increase the resistance of the eddy-current paths have been available and have largely eliminated this problem (Figure 8). Its use, coupled with flux shunts to control the distribution of leakage flux [11], means that eddy-current losses can now normally be contained within 10% to 15% of the I^2R loss. Therefore, the reduction of load loss depends simply on the amount of materials copper and iron that is considered economical to put into the transformer.

![Figure 8](image)

Mechanical Metalwork Eddy Current Loss

These losses are those that occur in leads and tanks and other structural metalwork. Until the recent development of computer calculation techniques using finite element analysis, the magnitude of stray losses was usually determined empirically. The tolerances on guarantees took care of instances where designs did not quite conform to previous experience. Modern computer programmes have removed the uncertainty from this aspect of design and have facilitated improvements in the designs themselves [12]. They enable designers to calculate and compare losses for differing arrangements as well as enabling suitable flux shields to be placed in critical areas. Stray loss, which is load dependent, has thus been reduced from perhaps 10% of the load losses to approximately half this value.

17. Sample Design

Specifications:

1. Output KVA S = 2.22*fi*Bm*Ai*J*Aw*Kw = 450W.
2. Voltage ratio V1/V2 220/18V
3. Frequency f Hz 50Hz
4. Number of phase Single phase
5. Rating Continuous
6. Cooling Natural
7. Type Shell type

Design Calculations

Applying voltage transformation ratio E_2 / E_1

$$N_2 / N_1 = k$$ we have, $18 / 220 = 0.082 = k$. (41)

Employing a two step cruciform core because of its gain,

$$A_1 = k_1A_g$$ (42)

Where k_1 = stacking or iron factor

$A_g = $ gross area of the core.

Assuming stacking factor of 0.9

$A_1 = 0.9*0.62d^2$, where d = diameter of the circumscribing circle or coil inner diameter or core diameter.
Assuming \(d = 5 \text{cm} \) – by measurement.

Then

\[
A_1 = 0.56d^2 = 0.56 \times 25 = 14 \text{cm}^2 = 0.14 \text{m}^2. \quad (43)
\]

Applying emf equation

\[
E_1 = 4.44N_1B_m A_1, \quad N_1 = 18 \text{turns} - \text{next even integer}. \quad (44)
\]

Voltage per turn. should be the same for both windings in an ideal design.

Therefore;

\[
\text{Emf}_1 / N_1 = 220 / 16.86 = 13.048 \text{V}. \quad (46)
\]

Using voltage transformation ratio

\[
E_2 / E_1 = N_2 / N_1 = k, \quad N_2 = kN_1 = 0.082 \times 18 = 1.476 \text{ or } 1.48 \quad (45)
\]

\[= 2 \text{turns} - \text{Next even integer}. \]

Voltage per turn. should be the same for both windings in an ideal design.

Therefore;

\[
\text{Emf}_2 / N_2 = 18 / 1.48 = 12.162 = 12 \text{V} > 1 \text{v} \quad \text{difference accounts for stray loss (design loss)}
\]

Maximum flux \(\Phi_m \)

\[
\Phi_m = B_m * A_1 = 0.42 * 0.14 = 0.059 \text{ Weber}. \quad (47)
\]

Maximum flux through the core

\[
\Phi_c = B_c * A_1 = 0.2 * 0.14 = 0.028 \text{m}^2. \quad (48)
\]

= Yoke area is increased by 0.2 to limit operating flux density at the yoke.

\[
H = L + 2d \quad \text{over height} \quad (50)
\]

\[
H * W = (2W_w + 4d)(L + 2d) \quad \text{－ entire area} \quad (51)
\]

\[
= 2W_w L + 4W_w d + 4dL + 8d^2. \quad (52)
\]

Area of yoke and core = \(0.168 \text{m}^2 \)

Now, window area = \(2W_w L \).

Therefore, Area of yoke and core = entire area (minus) window area.

That is;

\[
2W_w L + 4W_w d + 4dL + 8d^2 - 2W_w = 8d^2 \quad \text{－ simplifying, we have}
\]

\[
8d^2 + 4W_w d + 4dL = 4d(2d + W_w + L) \quad (53)
\]

NB: \(H/W_w = 2.5 \), therefore \(H = 2.5W_w = L, \quad d = 5 \text{cm} = 0.05 \text{m} \) – as obtained from measurement as mentioned previously.

Substituting these values in the expression above we have,

\[
4 * 0.05(2 * 0.05 + W_w + 2.5W_w) = 0.168
\]

\[
0.2(0.1 + W_w + 2.5W_w) = 0.168
\]

\[
0.02 + 0.7W_w = 0.168
\]

\[
0.7W_w = 0.168 - 0.02
\]

\[
0.7W_w = 0.148.
\]

\[
W_w = 0.148 / 0.7 = 0.21 \text{m}. \quad (54)
\]

\[
H = L = 2.5W_w = 2.5 * 0.21 = 0.525 \text{m} \quad (55)
\]

\[
A_w = H * W_w = W_w * L = 0.21 * 0.525 = 0.11 \text{m}^2. \quad (56)
\]

Therefore,

\[
\text{total window area} = 2A_w
\]

\[
or 2W_w * L = (2 * 0.11) \text{m}^2 = 0.22 \text{m}^2. \quad (57)
\]

\[
\text{Entire area} = \text{Area of window + Area of yoke and core}
\]

\[
= (0.22 + 0.168) = 0.388 = 0.39 \text{m}^2. \quad (58)
\]

Taking area covered by the insulator into consideration, and assuming the coil did not torch the two outer limbs, and then we have,

Insulation thickness = \(2 \text{mm} \)

\[
L_c = L - 4 \text{mm} = 0.525 - 0.004 = 0.521 \text{m} \quad (59)
\]

\[
W_c = W_w - 2 \text{mm}, \quad W_c = 0.21 - 0.002 = 0.208 \text{m} \quad (60)
\]

\[
\text{Area}_c = W_c * L_c = 0.51 * 0.208 = 0.108 \text{m}^2. \quad (61)
\]

\[
\text{Total window area when insulation thickness is subtracted}
\]

\[
\text{Total area} = 2 \text{Area}_c = 2W_c * L_c = 2 * 0.108 = 0.216 \text{m}^2. \quad (62)
\]

\[
\text{Entire area} = \text{Area of window + area of yoke and core}
\]

\[
= (0.216 + 0.168) = 0.384 = 0.38 \text{m}^2. \quad (63)
\]

\[
\text{Area of copper in the window or coil used} \quad \text{A}_{\text{cu}} \quad \text{is obtained as follows;}
\]

\[
A_{\text{cu} - \text{total}} = a_1N_1 + a_2N_2 = (I_1N_1 / J) + (I_2N_2 / J). \quad (64)
\]

From calculation we already know the following,

\[
N_1 = 18 \text{ turns}, \quad N_2 = 2 \text{ turns}, \quad J = 1064 \text{ Ampere m}^2, \quad I_1 = 2.56A, \quad I_2 = 31.25A
\]

Primary coil area;

\[
\text{A}_{\text{cu} - \text{total}} = I_1N_1 / J = (2.56 * 18) / 1064 \quad (65)
\]

\[
= 46.08 / 1064 = 0.0433 \text{m}^2
\]
Secondary coil area;

\[A_{\text{cu}2} = I_2 N_2 / J = (3.125 \times 2) / 1064 \]
\[= 62.5 / 1064 = 0.058m^2 \]

Total coil area

\[A_{\text{cu-\text{total}}} = a_1 N_1 + a_2 N_2 = (I_1 N_1 / J) + (I_2 N_2 / J). \]
\[0.0433m^2 + 0.058m^2 = 0.102m^2. \]

Diameter of the coil used in the primary winding is obtained as follows

\[A_{\text{cu1}} = \pi d^2 / 4; \]
\[\pi \times 0.0433 = 3.142d^2 / 4; \]
\[\pi \times 0.058 = 3.142d^2; \]
Therefore;
\[d = \sqrt{(0.1732 / 3.142)} = \sqrt{0.0551} \]
\[= 0.2348m = 235mm or 23.5cm \]

i.e 0.2m – approximately.

Diameter of the coil used in the secondary winding is obtained as follows

\[A_{\text{cu2}} = \pi d^2 / 4; \]
\[\pi \times 0.058 = 3.142d^2 / 4; \]
\[\pi \times 0.2348 = 3.142d^2 \]
Therefore;
\[d = \sqrt{(0.2348 / 3.142)} = \sqrt{0.0747} \]
\[= 0.2734m = 273mm or 27.3cm. \]

i.e 0.3m – approximately.

Total window area by calculation result obtained previously taking insulation thickness into consideration;

\[A_{w-\text{total}} = 0.216m^2; A_{\text{cu-\text{total}}} = 0.102m^2 \]

Actual window space in this design
\[K_w = A_{\text{cu-\text{total}}}/A_{w-\text{total}} = 0.102 / 0.216 = 0.47 \]

\[= 0.5 \text{ – approximately.} \]

Mean length of coil used in this design is calculated as follows;

\[A_i = 0.14m^2 \text{ – obtained previously in equation (43)} \]

Circumference of the core is approximated to \(\pi d \)

Area = 0.56d^2 – cruciform section core.

Therefore; \(A_i = \pi d; \)
\[0.14 = 0.56d^2; \]
\[d^2 = 0.14 / 0.56; \]
\[d = \sqrt{0.25} = 0.5m \]
Therefore; mean length of turns,
For; secondary side,
\[\pi d \times 2 \text{ turns} = 3.142 \times 0.5 \times 2 = 3.142m, \]

i.e 3m – approximately
For; primary side,
\[\pi d \times 18 \text{ turns} = 3.142 \times 0.5 \times 18 = 28.278m, \]

i.e 28m – approximately.

Current drawn from the mains by the primary winding is obtained from,
\[P_{\text{rated}} = I_1 V_i \cos \Phi, \]
\[I_1 = P / V_i \cos \Phi = 450 / 220 \times 0.8 = 2.56A. \]

\[P_{\text{rated}} = I_2 V_2 \cos \Phi, \]
\[I_2 = P / V_2 \cos \Phi = 450 / 18 \times 0.8 = 31.25A \]

Therefore power rating of the transformer is obtained as follows

\[P_{\text{out-\text{rated}}} = V_2 I_2 \cos \Phi = 18 \times 31.25 \times 0.8 \]
\[= 450W, \text{ – output power rating} \]
\[P_{\text{in-\text{rated}}} = V_1 I_1 \cos \Phi = 220 \times 2.56 \times 0.8 \]
\[= 450.56W, \text{ – input power rating.} \]

Power loss = \(P_{\text{in-\text{rated}}} - P_{\text{out-\text{rated}}} \)
\[= 450.56 - 450 = 0.56W. \]

Rated Power
Applying equation …..

\[S = 2.22F_{B_m} A_i A_w K_w. \]

we have \(F = 50Hz, B_m = 0.42 \text{ tesla, } A_i = 0.14m^2, \)
\[F_{B_m} = 0.059 \text{ Weber} \]
\[A_w = 0.216m^2 (\text{insulation thickness subtracted}) \]
\[K_w = 0.3 - \text{ Window space factor} \]
\[J = ?, S = P_{\text{rated}} = 450W \]
\[J = S_{\text{rated}} / 2.22F_{B_m} A_i A_w K_w \]
\[= 450 / (2.22 \times 50 \times 0.42 \times 0.14 \times 0.216 \times 0.3) \]
\[= 450 / 0.42293664 = 1063.99 \]
\[= 1064 \text{ Ampere} \times m^{-2}. \]

Therefore \(P_{\text{rated}} = S_{\text{rated}} = 2.22F_{B_m} A_i A_w K_w \)
\[= 2.22 \times 50 \times 0.42 \times 0.14 \times 0.216 \times 0.3 = 450.00458 \]
\[P_{\text{rated}} = S_{\text{rated}} = 450Watt. \]

Efficiency = power output/power input * 100
Power input = \(P_{\text{in}} = I_1 V_i \cos \Phi \)
\[= 2.56 \times 220 \times 0.8 = 450.56W \]
Power output = \(P_{\text{out}} = I_2 V_2 \cos \Phi \)
\[= 31.25 \times 18 \times 0.8 = 450W \]
Efficiency = \(450 / 450.56 \times 100 = 99.88\% \).

18. Conclusion

This manuscript presented design principles of power transformer (VA-transformer), laying bare the basic design calculations required to design a functional transformer. The unique nature of this paper is seen in its simplicity and straightforwardness. It broke down transformer design process to easily understandable form and removed ambiguity usually introduced by complex computational techniques found in most design paper. Readers with average knowledge as well as professionals would find this paper a handy guide.

References

