Total Domination Subdivision Number in Strong Product Graph

P. Jeyanthi1,∗, G. Hemalatha2, B. Davvaz3

1Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamil Nadu, India
2Department of mathematics, Shri Andal Alagar College of Engineering, Mamandur, Kancheepuram, Tamil Nadu, India
3Department of Mathematics, Yazd University, Yazd, Iran
*Corresponding author: jeyajeyanthi@rediffmail.com

Received June 03, 2014; Revised July 25, 2014; Accepted July 28, 2014

Abstract A set D of vertices in a graph G(V,E) is called a total dominating set if every vertex v∈V is adjacent to an element of D. The domination subdivision number of a graph G is the minimum number of edges that must be subdivided in order to increase the domination number of a graph. In this paper, we determine the total domination number for strong product graph and establish bounds on the total domination subdivision number for strong product graph.

Keywords: total dominating set, strong product graph, total domination number

1. Introduction

Let G=(V,E) be a simple graph on the vertex set V. In a graph G, a set D⊆V is a dominating set of G if every vertex in V−D is adjacent to some vertex in D. The domination number of a graph G is the minimum size of a dominating set in G, denoted by γ(G). A thorough study of fundamental domination appears in [2]. The concept of total domination in graphs was introduced by Cokayne, Dawes and Hedetemini [1]. A set of vertices in a graph G(V,E) is called a total dominating set if every vertex v∈V is adjacent to an element of S. The total domination number of a graph G is denoted by tSd G. In [2] the authors proved the total domination number for several families of graphs were determined in [3]. Nasrin Soltankhah showed that for any m,n ≥ 3, tSd G ≤ 3 [7]. The behaviour of several graph parameters in product graphs has become an interesting topic of research [6]. G. Yero and J. A. Rodríguez-Vel‘ázquez [11] proved that for any m,n ≥ 2, γ(Pm Pn) = \{m \over 3 \} \{n \over 3 \}. In this paper is to establish a bound of this type on tSd Pm Pn.

2. Main Result

In this section, we first determine the value of the total domination number of Pm Pn for m ≤ 4. Since P1 Pn = Pn, we have:

Proposition 2.1. For any n ≥ 2, we have

\[tSd Pm Pn = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \frac{n}{2} + 1 & \text{if } n \equiv 1, 2, 3 \pmod{4} \end{cases} \]
Lemma 2.2. We have $\gamma_t(P_2 \boxtimes P_n) = \begin{cases} 2 & \text{for } n = 2, 3, 4 \\ 3 & \text{for } n = 5. \end{cases}$

Proof: To obtain totally dominate the vertices (u_2, v_1) and (u_2, v_2), we need two vertices (u_1, v_1) and (u_1, v_2). Therefore, $\gamma_t(P_2 \boxtimes P_2) = 2$. Last column of $P_2 \boxtimes P_3$ is totally dominated by $P_2 \boxtimes P_2$. Hence, $\gamma_t(P_2 \boxtimes P_3) = 2$.

Let us consider $P_2 \boxtimes P_4$ as block B. The last three columns of $P_2 \boxtimes P_3$ is block B. The first column of $P_2 \boxtimes P_4$ can be totally dominated by B. Hence, $\gamma_t(P_2 \boxtimes P_4) = 2$. In $P_2 \boxtimes P_3$, to totally dominate a vertex (u_1, v_1), we need one vertex among $\{(u_2, v_3), (u_2, v_4), (u_1, v_4)\}$. Hence, $\gamma_t(P_2 \boxtimes P_3) = 3$.

The first three columns of $P_2 \boxtimes P_3$ is block B and also the last column of $P_2 \boxtimes P_3$ is totally dominated by the fourth column. This completes the proof.

Proposition 2.3. For any $n \geq 6$, we have

$$\gamma_t(P_2 \boxtimes P_n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \frac{n+1}{2} & \text{if } n \equiv 1, 3 \pmod{4} \\ \frac{n+2}{2} & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Proof:

Figure 1. $P_2 \boxtimes P_n$

Let S be a total dominating set of $P_2 \boxtimes P_n$. Since $\gamma_t(P_2 \boxtimes P_4) = 2$. Suppose that C_1, C_2, C_3 and C_4 are four consecutive columns of $P_2 \boxtimes P_n$. To totally dominate the vertices (u_1, v_{j+1}) and (u_1, v_{j+2}), we need one vertex among $\{(u_1, v_1), (u_1, v_{j+1}), (u_2, v_{j+1})\}$ and one more vertex among $\{(u_1, v_1), (u_1, v_{j+3}), (u_2, v_{j+2})\}$. Now, to describe the total dominating set S, we consider block $B = P_2 \boxtimes P_4$ and $\cap B = \{(u_1, v_1), (u_1, v_3)\}$. If $n \equiv 0 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n}{4}$ number of blocks B. If $n \equiv 1 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-5}{4}$ number of blocks B, plus a block $B' = P_2 \boxtimes P_3$ and $S \cap B' = \{(u_1, v_1), (u_1, v_3), (u_1, v_4)\}$. If $n \equiv 2 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-2}{4}$ number of blocks B, plus a block $B' = P_2 \boxtimes P_2$ and $S \cap B' = \{(u_1, v_1), (u_1, v_2)\}$. If $n \equiv 3 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-3}{4}$ number of blocks B, plus a block $B' = P_2 \boxtimes P_3$ and $S \cap B' = \{(u_1, v_1), (u_1, v_2)\}$.

This completes the proof.

Proposition 2.4. For $n \geq 3$, the total domination number of $P_2 \boxtimes P_2$ and $P_2 \boxtimes P_3$ are same.

Proof: Last two rows of $P_2 \boxtimes P_n$ is considered as blocks $B = P_2 \boxtimes P_2$ and the first row of $P_3 \boxtimes P_n$ is totally dominated by B, which completes the proof.

Observation 2.5. For $n \geq 1$, we have $P_2 \boxtimes P_n \subseteq P_n \boxtimes P_2$.

Proposition 2.6. For any $n \geq 4$, we have

Proof:
number of blocks B, plus a block $B' = P_4 \boxtimes P_1$ and $S \cap B' = \{(u_2, v_1), (u_3, v_1)\}$. If $n = 2(\mod 3)$, then $P_4 \boxtimes P_n$ can be partitioned with \(\frac{n-2}{3} \) number of blocks B, plus a block $B' = P_4 \boxtimes P_3$ and $S \cap B' = \{(u_2, v_1), (u_3, v_1)\}$.

This completes the proof.

Theorem 2.7. We have

\[
\gamma_t(P_m \boxtimes P_n) = \begin{cases} \left\lfloor \frac{m}{2} \right\rfloor \frac{n}{3} & \text{if } m = 0(\mod 4) \\ \left\lfloor \frac{m+1}{2} \right\rfloor \frac{n}{3} & \text{if } m = 1, 2, 3(\mod 4). \end{cases}
\]

Proof:

Let us consider $P_m \boxtimes P_1$ as block. Now to describe our total dominating set S, we consider block $B = P_m \boxtimes P_1$. If $m = 0(\mod 4)$, then $P_m \boxtimes P_1$ can be partitioned with \(\frac{n}{3} \) number of blocks B. By Proposition 2.1 and Observation 2.5, we have

\[
\gamma_t(P_m \boxtimes P_1) = \left\lfloor \frac{m}{2} \right\rfloor \frac{n}{3}.
\]

Let $xuv u v$ be a total dominating set of $P_m \boxtimes P_n$. By Proposition 2.1 and Observation 2.5, we have

\[
\gamma_t(P_m \boxtimes P_n) = \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{n}{3} \right\rfloor.
\]

This completes the proof.

3. **Subdivision Number for the Strong Product Graph**

Proposition 2.8. For $P_2 \boxtimes P_2$, we have $SD\gamma_t(P_2 \boxtimes P_2) = 2$.

Proof: Let S be a total dominating set of $P_2 \boxtimes P_2$ and $S = \{(u_1, v_1), (u_1, v_2)\}$. Let $(P_2 \boxtimes P_2)'$ be obtained from $P_2 \boxtimes P_2$ by subdividing an edge $(u_1, v_1)\{(u_2, v_1)\}$ and adding a new vertex called x. Now, there is no change in total domination number, i.e., $\gamma_t(P_2 \boxtimes P_2) = \gamma_{t'}(P_2 \boxtimes P_2)$.

Let $(P_2 \boxtimes P_2)'$ be obtained from $P_2 \boxtimes P$ by subdividing the edges $(u_1, v_1)\{(u_2, v_1), (u_3, v_1)\}$ and adding new vertices respectively called x and y. So, we need three vertices for totally domination. Therefore, $S' = \{(u_1, v_1), (u_1, v_2), (u_3, v_2)\}$.

Thus, $\gamma_t(P_2 \boxtimes P_2)' = 3$. By Lemma 2.2, we obtain that the total domination number of $(P_2 \boxtimes P_2)'$ is greater than the total domination number of $P_2 \boxtimes P_2$. This completes the proof.

Proposition 2.9. For $B = P_2 \boxtimes P_2$, we have $S \cap B = \{(u_1, v_1), (u_1, v_2)\}$.

Proof: To describe our total dominating set S, we consider block $B = P_2 \boxtimes P_2$ and $S \cap B = \{(u_1, v_1), (u_1, v_2)\}$. Since $SD\gamma_t(P_2 \boxtimes P_2) = 2$. Thus, we have $SD\gamma_t(P_2 \boxtimes P_2) = 2$.

Proposition 2.10. For $P_2 \boxtimes P_4$, we have $SD\gamma_t(P_2 \boxtimes P_4) = 1$.

Proof: Let S be a total dominating set of $P_2 \boxtimes P_4$ and $S = \{(u_1, v_2), (u_1, v_3)\}$. Let $(P_2 \boxtimes P_4)'$ be obtained from $P_2 \boxtimes P_4$ by subdividing an edge $(u_2, v_1)(u_1, v_2)$ and adding a new vertex called x. To totally dominate (u_2, v_1), we need one vertex among $\{(u_1, v_1), (u_1, v_2)\}$. Therefore, $S' = \{(u_1, v_1), (u_1, v_2), (u_3, v_3)\}$. Thus, $\gamma_t(P_2 \boxtimes P_4)' = 3$.

By Lemma 2.2, we obtain that the total domination number of $(P_2 \boxtimes P_4)'$ is greater than the total domination number of $P_2 \boxtimes P_4$. This completes the proof.

Proposition 2.11. For $P_2 \boxtimes P_3$, we have $SD\gamma_t(P_2 \boxtimes P_3) = 1$.

Proof: Let S be a total dominating set of $P_2 \boxtimes P_3$ and $S = \{(u_1, v_2), (u_1, v_3)\}$. Let $(P_2 \boxtimes P_3)'$ be obtained from $P_2 \boxtimes P_3$ by subdividing an edge $(u_2, v_1)(u_1, v_2)$ and adding a new vertex called x. To totally dominate (u_2, v_1), we need one vertex among $\{(u_1, v_1), (u_1, v_2)\}$. Therefore, $S' = \{(u_1, v_1), (u_1, v_2), (u_1, v_3)\}$. Thus, $\gamma_t(P_2 \boxtimes P_3)' = 4$. By Lemma 2.2, we obtain that the total
domination number of \((P_2 \boxtimes P_3)^r\) is greater than the total domination number of \(P_2 \boxtimes P_3\). This completes the proof.

Theorem 2.8. For \(n \geq 4\), we have \(\text{Sd} \gamma_1(P_2 \boxtimes P_n) = 1\).

Proof: To describe our total dominating set \(S\), we consider block \(B = P_2 \boxtimes P_n\) and \(S \cap B = \{(u_1, v_2), (u_1, v_3)\}\). Since \(\text{Sd} \gamma_1(P_2 \boxtimes P_4) = 1\) and by Proposition 2.3, we have \(\text{Sd} \gamma_1(P_2 \boxtimes P_n) = 1\).

Theorem 2.9. For \(n \geq 3\), subdivision number of \(P_2 \boxtimes P_n\) and \(P_3 \boxtimes P_n\) are same.

Proof: Last two rows of \(P_3 \boxtimes P_n\) is considered as blocks \(B = P_2 \boxtimes P_n\) and the first row of \(P_3 \boxtimes P_n\) is totally dominated by \(B\), which completes the proof.

Theorem 2.10. For \(n \geq 4\), we have \(\text{Sd} \gamma_1(P_4 \boxtimes P_n) = 1\).

Proof: To describe our total dominating set \(S\), we consider block \(B = P_4 \boxtimes P_3\) and \(S \cap B = \{(u_2, v_2), (u_3, v_2)\}\). By Theorem 2.9, we have \(\text{Sd} \gamma_1(P_4 \boxtimes P_3) = 1\). Thus, \(\text{Sd} \gamma_1(P_4 \boxtimes P_n) = 1\).

Theorem 2.11. For \(n \geq 4\), we have \(\text{Sd} \gamma_1(P_m \boxtimes P_n) = 1\).

Proof: To describe our total dominating set \(S\), we consider block \(B = P_2 \boxtimes P_n\). By Theorem 2.10, we have \(\text{Sd} \gamma_1(P_4 \boxtimes P_n) = 1\). Thus, \(\text{Sd} \gamma_1(P_m \boxtimes P_n) = 1\).

References